#pip install langchain_google_genai langgraph gradio import os import sys import typing from typing import Annotated, Literal, Iterable from typing_extensions import TypedDict from langchain_google_genai import ChatGoogleGenerativeAI from langgraph.graph import StateGraph, START, END from langgraph.graph.message import add_messages from langgraph.prebuilt import ToolNode from langchain_core.tools import tool from langchain_core.messages import AIMessage, ToolMessage, HumanMessage, BaseMessage, SystemMessage from random import randint import wikipedia import gradio as gr import logging class OrderState(TypedDict): """State representing the customer's order conversation.""" messages: Annotated[list, add_messages] order: list[str] finished: bool # System instruction for the BaristaBot SYSINT = ( "system", "You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: " "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings." "If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise." "If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise." "If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string." "If a tool required for task completion is unavailable after multiple tries, return 0." ) WELCOME_MSG = "Welcome to the BaristaBot cafe. Type `q` to quit. How may I serve you today?" # Initialize the Google Gemini LLM llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest") @tool def wikipedia_search(title: str) -> str: """Provides a short snippet from a Wikipedia article with the given title""" page = wikipedia.page(title) return page.content[:300] def agent_node(state: OrderState) -> OrderState: """agent with tool handling.""" print(f"Messagelist sent to agent node: {[msg.content for msg in state.get('messages', [])]}") defaults = {"order": [], "finished": False} # Ensure we always have at least a system message if not state.get("messages", []): return defaults | state | {"messages": []} try: # Prepend system instruction if not already present messages_with_system = [ SystemMessage(content=SYSINT) ] + state.get("messages", []) # Process messages through the LLM new_output = llm_with_tools.invoke(messages_with_system) return defaults | state | {"messages": [new_output]} except Exception as e: # Fallback if LLM processing fails return defaults | state | {"messages": [AIMessage(content=f"I'm having trouble processing that. {str(e)}")]} def maybe_route_to_tools(state: OrderState) -> str: """Route between chat and tool nodes.""" if not (msgs := state.get("messages", [])): raise ValueError(f"No messages found when parsing state: {state}") msg = msgs[-1] if state.get("finished", False): print("from agent GOTO End node") return END elif hasattr(msg, "tool_calls") and len(msg.tool_calls) > 0: if any(tool["name"] in tool_node.tools_by_name.keys() for tool in msg.tool_calls): print("from agent GOTO tools node") return "tools" print("tool call failed, letting agent try again") return "human" def human_node(state: OrderState) -> OrderState: """Handle user input.""" logging.info(f"Messagelist sent to human node: {[msg.content for msg in state.get('messages', [])]}") last_msg = state["messages"][-1] if last_msg.content.lower() in {"q", "quit", "exit", "goodbye"}: state["finished"] = True return state def maybe_exit_human_node(state: OrderState) -> Literal["agent", "__end__"]: """Determine if conversation should continue.""" if state.get("finished", False): logging.info("from human GOTO End node") return END last_msg = state["messages"][-1] if isinstance(last_msg, AIMessage): logging.info("Chatbot response obtained, ending conversation") return END else: logging.info("from human GOTO agent node") return "agent" # Prepare tools auto_tools = [] tool_node = ToolNode(auto_tools) interactive_tools = [wikipedia_search] # Bind all tools to the LLM llm_with_tools = llm.bind_tools(auto_tools + interactive_tools) # Build the graph graph_builder = StateGraph(OrderState) # Add nodes graph_builder.add_node("agent", agent_node) graph_builder.add_node("human", human_node) graph_builder.add_node("tools", tool_node) # Add edges and routing graph_builder.add_conditional_edges("agent", maybe_route_to_tools) graph_builder.add_conditional_edges("human", maybe_exit_human_node) graph_builder.add_edge("tools", "agent") graph_builder.add_edge("ordering", "agent") graph_builder.add_edge(START, "human") # Compile the graph chat_graph = graph_builder.compile() def convert_history_to_messages(history: list) -> list[BaseMessage]: """ Convert Gradio chat history to a list of Langchain messages. Args: - history: Gradio's chat history format Returns: - List of Langchain BaseMessage objects """ messages = [] for human, ai in history: if human: messages.append(HumanMessage(content=human)) if ai: messages.append(AIMessage(content=ai)) return messages def gradio_chat(message: str, history: list) -> str: """ Gradio-compatible chat function that manages the conversation state. Args: - message: User's input message - history: Gradio's chat history Returns: - Bot's response as a string """ logging.info(f"{len(history)} history so far: {history}") # Ensure non-empty message if not message or message.strip() == "": message = "Hello, how can I help you today?" # Convert history to Langchain messages conversation_messages = [] for old_message in history: if old_message["content"].strip(): if old_message["role"] == "user": conversation_messages.append(HumanMessage(content=old_message["content"])) if old_message["role"] == "assistant": conversation_messages.append(AIMessage(content=old_message["content"])) # Add current message conversation_messages.append(HumanMessage(content=message)) # Create initial state with conversation history conversation_state = { "messages": conversation_messages, "order": [], "finished": False } logging.info(f"Conversation so far: {str(conversation_state)}") try: # Process the conversation through the graph conversation_state = chat_graph.invoke(conversation_state, {"recursion_limit": 10}) # Extract the latest bot message latest_message = conversation_state["messages"][-1] # Return the bot's response content logging.info(f"return: {latest_message.content}") return latest_message.content except Exception as e: return f"An error occurred: {str(e)}" # Gradio interface def launch_baristabot(): gr.ChatInterface( gradio_chat, type="messages", title="BaristaBot", description="Your friendly AI cafe assistant", theme="ocean" ).launch() if __name__ == "__main__": # initiate logging tool logging.basicConfig( stream=sys.stdout, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') launch_baristabot()