|
import pandas as pd |
|
import numpy as np |
|
import json |
|
from typing import Dict, List, Optional, Union, Any |
|
import os |
|
import requests |
|
from dotenv import load_dotenv |
|
from rich.console import Console |
|
from rich.table import Table |
|
from rich.panel import Panel |
|
from rich.tree import Tree |
|
from rich import box |
|
import time |
|
from tqdm import tqdm |
|
import openai |
|
import gradio as gr |
|
from huggingface_hub import HfApi, HfFolder |
|
|
|
|
|
load_dotenv() |
|
|
|
class CourseRecommender: |
|
def __init__(self, dataframe: pd.DataFrame): |
|
""" |
|
Initialize the course recommender with course data |
|
""" |
|
self.courses = dataframe.drop(columns=['Unnamed: 1', 'Unnamed: 5'], errors='ignore') |
|
self._preprocess_data() |
|
self.console = Console() |
|
|
|
|
|
api_key = os.getenv("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") |
|
self.ai_enabled = bool(api_key) |
|
if self.ai_enabled: |
|
self.openai_client = openai.OpenAI(api_key=api_key) |
|
else: |
|
self.console.print("[yellow]Warning: OpenAI API key not found. AI-enhanced features will be disabled.[/yellow]") |
|
|
|
def _preprocess_data(self): |
|
""" |
|
Preprocess the course data for better recommendations |
|
""" |
|
|
|
text_columns = ['Course Name', 'Description', 'Skills', 'Difficulty Level'] |
|
for col in text_columns: |
|
if col in self.courses.columns: |
|
self.courses[col] = self.courses[col].astype(str).str.lower() |
|
|
|
|
|
self.courses['Course Rating'] = pd.to_numeric(self.courses['Course Rating'], errors='coerce').fillna(0) |
|
self.courses['keyword_match_score'] = 0 |
|
|
|
|
|
self.courses['Course ID'] = range(1, len(self.courses) + 1) |
|
|
|
def recommend_courses(self, topic: Optional[str] = None, skill_level: Optional[str] = None, |
|
top_n: int = 5, personalized: bool = False, user_goals: Optional[str] = None) -> pd.DataFrame: |
|
""" |
|
Recommend courses based on topic, skill level, and optional user goals |
|
""" |
|
filtered_courses = self.courses.copy() |
|
|
|
|
|
with self.console.status("[bold green]Finding the best courses for you...", spinner="dots"): |
|
time.sleep(1) |
|
|
|
|
|
if topic: |
|
topic = topic.lower() |
|
|
|
filtered_courses['keyword_match_score'] = ( |
|
filtered_courses['Course Name'].str.contains(topic).astype(int) * 3 + |
|
filtered_courses['Description'].str.contains(topic).astype(int) * 2 + |
|
filtered_courses['Skills'].str.contains(topic).astype(int) |
|
) |
|
filtered_courses = filtered_courses[filtered_courses['keyword_match_score'] > 0] |
|
|
|
|
|
if skill_level: |
|
skill_level = skill_level.lower() |
|
difficulty_map = { |
|
'beginner': ['beginner', 'intro', 'basic', 'level 1', 'fundamentals'], |
|
'intermediate': ['intermediate', 'mid-level', 'level 2', 'advanced beginner'], |
|
'advanced': ['advanced', 'expert', 'professional', 'level 3', 'master'] |
|
} |
|
filtered_courses = filtered_courses[ |
|
filtered_courses['Difficulty Level'].apply( |
|
lambda x: any(diff in str(x) for diff in difficulty_map.get(skill_level, [skill_level])) |
|
) |
|
] |
|
|
|
|
|
filtered_courses['ai_relevance_score'] = 0 |
|
if personalized and user_goals and self.ai_enabled: |
|
for idx, course in filtered_courses.iterrows(): |
|
relevance_score = self._get_ai_relevance_score(course, topic, user_goals) |
|
filtered_courses.at[idx, 'ai_relevance_score'] = relevance_score |
|
|
|
|
|
if not filtered_courses.empty: |
|
filtered_courses['recommendation_score'] = ( |
|
filtered_courses['Course Rating'] * 0.4 + |
|
filtered_courses['keyword_match_score'] * 0.3 + |
|
filtered_courses['ai_relevance_score'] * 0.2 + |
|
np.random.rand(len(filtered_courses)) * 0.1 |
|
) |
|
filtered_courses = filtered_courses.sort_values('recommendation_score', ascending=False) |
|
|
|
return filtered_courses.head(top_n) |
|
|
|
def _get_ai_relevance_score(self, course: pd.Series, topic: str, user_goals: str) -> float: |
|
""" |
|
Use AI to determine how relevant a course is to user's specific goals |
|
""" |
|
if not self.ai_enabled: |
|
return 0.5 |
|
|
|
try: |
|
prompt = f""" |
|
Rate how relevant this course is to a learner with these goals on a scale of 0-10: |
|
|
|
Topic of interest: {topic} |
|
User's learning goals: {user_goals} |
|
|
|
Course details: |
|
- Name: {course['Course Name']} |
|
- Description: {course['Description']} |
|
- Skills taught: {course['Skills']} |
|
- Difficulty: {course['Difficulty Level']} |
|
|
|
Return only a number from 0-10. |
|
""" |
|
|
|
response = self.openai_client.chat.completions.create( |
|
model="gpt-3.5-turbo", |
|
messages=[ |
|
{"role": "system", "content": "You are an educational advisor helping match courses to learner goals."}, |
|
{"role": "user", "content": prompt} |
|
], |
|
max_tokens=10, |
|
temperature=0.3 |
|
) |
|
|
|
try: |
|
score = float(response.choices[0].message.content.strip()) |
|
return min(max(score, 0), 10) / 10 |
|
except ValueError: |
|
return 0.5 |
|
|
|
except Exception as e: |
|
self.console.print(f"[red]Error getting AI relevance score: {e}[/red]") |
|
return 0.5 |
|
|
|
def generate_roadmap(self, topic: str, skill_level: Optional[str] = None, |
|
user_goals: Optional[str] = None, detailed: bool = False) -> Dict: |
|
""" |
|
Generate a personalized learning roadmap based on the topic and user goals |
|
""" |
|
self.console.print(Panel(f"[bold cyan]Generating your personalized learning roadmap for [green]{topic}[/green]...[/bold cyan]")) |
|
|
|
|
|
for _ in tqdm(range(5), desc="Processing roadmap data"): |
|
time.sleep(0.3) |
|
|
|
|
|
if detailed and self.ai_enabled and user_goals: |
|
return self._generate_ai_roadmap(topic, skill_level, user_goals) |
|
else: |
|
return self._generate_default_roadmap(topic) |
|
|
|
def _generate_ai_roadmap(self, topic: str, skill_level: str, user_goals: str) -> Dict: |
|
""" |
|
Use AI to generate a personalized and detailed learning roadmap |
|
""" |
|
try: |
|
|
|
prompt = f""" |
|
Create a comprehensive learning roadmap for someone wanting to master {topic}. |
|
|
|
Learner information: |
|
- Current skill level: {skill_level} |
|
- Learning goals: {user_goals} |
|
|
|
The roadmap should be detailed, actionable, and specifically tailored to the learner's |
|
skill level and goals. Provide a clear progression path that breaks down the journey |
|
into logical stages with specific concepts to learn at each stage. |
|
|
|
Format the response as a JSON object with exactly this structure: |
|
{{ |
|
"learningPath": [ |
|
{{ |
|
"step": "Step name (be specific)", |
|
"difficulty": "Beginner/Intermediate/Advanced", |
|
"description": "Detailed description of this learning stage (2-3 sentences)", |
|
"time_estimate": "Estimated completion time (weeks/months)", |
|
"key_concepts": ["Specific concept 1", "Specific concept 2", "Specific concept 3"], |
|
"milestones": ["Practical milestone 1", "Practical milestone 2"], |
|
"practice_activities": ["Activity 1", "Activity 2"] |
|
}}, |
|
// 3-5 steps total, progressing from fundamentals to mastery |
|
], |
|
"projectSuggestions": [ |
|
{{ |
|
"name": "Project name (be specific to {topic})", |
|
"description": "Detailed project description (2-3 sentences)", |
|
"complexity": "Low/Medium/High", |
|
"skills_practiced": ["Skill 1", "Skill 2", "Skill 3"], |
|
"resources": ["Specific resource 1", "Specific resource 2"], |
|
"estimated_time": "Project completion time estimate" |
|
}}, |
|
// 3-4 projects of increasing complexity |
|
], |
|
"resources": {{ |
|
"books": ["Specific book title 1", "Specific book title 2", "Specific book title 3"], |
|
"online_courses": ["Specific course 1", "Specific course 2"], |
|
"communities": ["Specific community 1", "Specific community 2"], |
|
"tools": ["Specific tool 1", "Specific tool 2", "Specific tool 3"], |
|
"practice_platforms": ["Specific platform 1", "Specific platform 2"] |
|
}}, |
|
"career_insights": [ |
|
"Specific insight about {topic} career opportunities", |
|
"Skill demand information", |
|
"Industry application of {topic} skills" |
|
] |
|
}} |
|
|
|
Ensure all content is specific to {topic} (not generic) and appropriate for a {skill_level} |
|
with these goals: {user_goals}. Focus on practical, actionable advice. |
|
""" |
|
|
|
response = self.openai_client.chat.completions.create( |
|
model="gpt-4o", |
|
messages=[ |
|
{"role": "system", "content": "You are an expert educational curriculum designer with deep knowledge across technical and non-technical subjects. You create detailed, actionable learning plans that are practical and tailored to individual needs."}, |
|
{"role": "user", "content": prompt} |
|
], |
|
max_tokens=2500, |
|
temperature=0.5, |
|
response_format={"type": "json_object"} |
|
) |
|
|
|
try: |
|
roadmap_text = response.choices[0].message.content |
|
return json.loads(roadmap_text) |
|
except json.JSONDecodeError as e: |
|
self.console.print(f"[yellow]Warning: Could not parse AI response as JSON: {e}. Using default roadmap.[/yellow]") |
|
return self._generate_default_roadmap(topic) |
|
|
|
except Exception as e: |
|
self.console.print(f"[red]Error generating AI roadmap: {e}[/red]") |
|
return self._generate_default_roadmap(topic) |
|
|
|
def _generate_default_roadmap(self, topic: str) -> Dict: |
|
""" |
|
Generate a default roadmap when AI generation fails or is not available |
|
""" |
|
return { |
|
"learningPath": [ |
|
{ |
|
"step": f"Foundations of {topic}", |
|
"difficulty": "Beginner", |
|
"description": f"Build core knowledge and fundamental skills in {topic}. Focus on understanding basic principles and becoming familiar with essential tools.", |
|
"time_estimate": "4-6 weeks", |
|
"key_concepts": [f"{topic} basics", "Core principles", "Fundamental tools and techniques"], |
|
"milestones": [f"Complete first {topic} exercise", f"Build simple {topic} project"], |
|
"practice_activities": [f"Daily {topic} exercises", "Follow beginner tutorials"] |
|
}, |
|
{ |
|
"step": f"{topic} Skill Development", |
|
"difficulty": "Intermediate", |
|
"description": f"Deepen understanding of {topic} and apply more advanced concepts. Focus on building practical skills through hands-on projects and implementation.", |
|
"time_estimate": "8-12 weeks", |
|
"key_concepts": [f"Advanced {topic} techniques", "Applied projects", "Specialized tools"], |
|
"milestones": [f"Complete medium complexity {topic} project", "Solve real-world problems"], |
|
"practice_activities": ["Implement sample projects", "Participate in forums/discussions"] |
|
}, |
|
{ |
|
"step": f"{topic} Mastery & Specialization", |
|
"difficulty": "Advanced", |
|
"description": f"Develop expert-level skills in {topic} with focus on real-world application. Specialize in specific areas and build a professional portfolio.", |
|
"time_estimate": "12-16 weeks", |
|
"key_concepts": ["Industry best practices", "Complex problem-solving", "Portfolio development"], |
|
"milestones": ["Create capstone project", "Contribute to community"], |
|
"practice_activities": ["Build complex projects", "Mentor beginners"] |
|
} |
|
], |
|
"projectSuggestions": [ |
|
{ |
|
"name": f"Beginner Project: {topic} Fundamentals Application", |
|
"description": f"Apply basic {topic} concepts in a simple project to practice fundamentals and gain confidence.", |
|
"complexity": "Low", |
|
"skills_practiced": [f"Basic {topic} principles", "Problem-solving", "Tool familiarity"], |
|
"resources": ["Online tutorials", "Documentation", "Starter templates"], |
|
"estimated_time": "1-2 weeks" |
|
}, |
|
{ |
|
"name": f"Intermediate Project: Interactive {topic} Application", |
|
"description": f"Create a more complex application using intermediate {topic} skills with greater functionality and sophistication.", |
|
"complexity": "Medium", |
|
"skills_practiced": [f"Intermediate {topic} techniques", "Code organization", "Testing"], |
|
"resources": ["GitHub repositories", "Online coding platforms", "Community forums"], |
|
"estimated_time": "3-4 weeks" |
|
}, |
|
{ |
|
"name": f"Capstone Project: Advanced {topic} Implementation", |
|
"description": f"Apply all learned skills in a comprehensive {topic} project that showcases mastery and solves a real-world problem.", |
|
"complexity": "High", |
|
"skills_practiced": [f"Advanced {topic} mastery", "System design", "Optimization"], |
|
"resources": ["Industry case studies", "Research papers", "Expert communities"], |
|
"estimated_time": "6-8 weeks" |
|
} |
|
], |
|
"resources": { |
|
"books": [f"Introduction to {topic}", f"Advanced {topic} Techniques", f"Mastering {topic}"], |
|
"online_courses": [f"{topic} for Beginners", f"Professional {topic} Masterclass"], |
|
"communities": ["Stack Overflow", "Reddit", f"{topic} Discord Servers"], |
|
"tools": [f"{topic} Development Environment", "Version Control", "Testing Frameworks"], |
|
"practice_platforms": ["Codecademy", "Exercism", "LeetCode"] |
|
}, |
|
"career_insights": [ |
|
f"Proficiency in {topic} is valuable for roles in software development, data science, and IT operations", |
|
f"Entry-level {topic} positions typically require demonstrated project experience", |
|
f"{topic} specialists can pursue careers in consulting, education, or product development" |
|
] |
|
} |
|
|
|
def get_course_details(self, course: pd.Series) -> Dict[str, str]: |
|
""" |
|
Get detailed course information |
|
""" |
|
return { |
|
"name": course.get('Course Name', 'N/A'), |
|
"difficulty": course.get('Difficulty Level', 'N/A'), |
|
"rating": str(course.get('Course Rating', 'N/A')), |
|
"url": course.get('Course URL', '#'), |
|
"skills": course.get('Skills', 'N/A'), |
|
"description": course.get('Description', 'No description available'), |
|
"id": str(course.get('Course ID', '0')) |
|
} |
|
|
|
def display_roadmap(self, roadmap: Dict): |
|
""" |
|
Display the learning roadmap in a beautiful format using rich |
|
""" |
|
self.console.print("\n") |
|
self.console.print(Panel("[bold cyan]YOUR PERSONALIZED LEARNING JOURNEY[/bold cyan]", |
|
box=box.DOUBLE, expand=False)) |
|
|
|
|
|
learning_tree = Tree("[bold yellow]Learning Path[/bold yellow]") |
|
for stage in roadmap["learningPath"]: |
|
stage_node = learning_tree.add(f"[bold green]{stage['step']}[/bold green] ({stage['difficulty']}) - {stage['time_estimate']}") |
|
stage_node.add(f"[italic]{stage['description']}[/italic]") |
|
|
|
concepts_node = stage_node.add("[bold blue]Key Concepts:[/bold blue]") |
|
for concept in stage.get("key_concepts", []): |
|
concepts_node.add(concept) |
|
|
|
if "milestones" in stage: |
|
milestones_node = stage_node.add("[bold magenta]Milestones:[/bold magenta]") |
|
for milestone in stage["milestones"]: |
|
milestones_node.add(milestone) |
|
|
|
if "practice_activities" in stage: |
|
activities_node = stage_node.add("[bold cyan]Practice Activities:[/bold cyan]") |
|
for activity in stage["practice_activities"]: |
|
activities_node.add(activity) |
|
|
|
self.console.print(learning_tree) |
|
self.console.print("\n") |
|
|
|
|
|
project_table = Table(title="Recommended Projects", box=box.ROUNDED) |
|
project_table.add_column("Project Name", style="cyan", no_wrap=True) |
|
project_table.add_column("Description", style="white") |
|
project_table.add_column("Complexity", style="magenta") |
|
project_table.add_column("Est. Time", style="yellow") |
|
|
|
for project in roadmap["projectSuggestions"]: |
|
project_table.add_row( |
|
project["name"], |
|
project["description"], |
|
project["complexity"], |
|
project.get("estimated_time", "N/A") |
|
) |
|
|
|
self.console.print(project_table) |
|
self.console.print("\n") |
|
|
|
|
|
resources = roadmap.get("resources", {}) |
|
resources_text = "" |
|
|
|
resource_categories = { |
|
"books": "Recommended Books", |
|
"online_courses": "Online Courses", |
|
"communities": "Communities", |
|
"tools": "Essential Tools", |
|
"practice_platforms": "Practice Platforms" |
|
} |
|
|
|
for category, title in resource_categories.items(): |
|
if category in resources and resources[category]: |
|
resources_text += f"[bold yellow]{title}:[/bold yellow]\n" |
|
for item in resources[category]: |
|
resources_text += f"• {item}\n" |
|
resources_text += "\n" |
|
|
|
self.console.print(Panel(resources_text, title="[bold cyan]Learning Resources[/bold cyan]", |
|
box=box.ROUNDED, expand=False)) |
|
|
|
|
|
if "career_insights" in roadmap and roadmap["career_insights"]: |
|
career_text = "[bold yellow]Career Insights:[/bold yellow]\n" |
|
for insight in roadmap["career_insights"]: |
|
career_text += f"• {insight}\n" |
|
|
|
self.console.print(Panel(career_text, title="[bold cyan]Career Opportunities[/bold cyan]", |
|
box=box.ROUNDED, expand=False)) |
|
|
|
def display_recommended_courses(self, courses: pd.DataFrame): |
|
""" |
|
Display recommended courses in a beautiful format |
|
""" |
|
if courses.empty: |
|
self.console.print("[yellow]No courses match your criteria. Try broader search terms.[/yellow]") |
|
return |
|
|
|
table = Table(title="Recommended Courses", box=box.ROUNDED) |
|
table.add_column("ID", style="dim") |
|
table.add_column("Course Name", style="cyan") |
|
table.add_column("Rating", style="yellow") |
|
table.add_column("Difficulty", style="green") |
|
|
|
for _, course in courses.iterrows(): |
|
table.add_row( |
|
str(course.get('Course ID', 'N/A')), |
|
course.get('Course Name', 'N/A').title(), |
|
f"{course.get('Course Rating', 0):.1f} ★", |
|
course.get('Difficulty Level', 'N/A').title() |
|
) |
|
|
|
self.console.print(table) |
|
self.console.print("\n[dim]Use the course ID to get more details about a specific course.[/dim]") |
|
|
|
def roadmap_to_markdown(self, roadmap: Dict, topic: str, skill_level: str) -> str: |
|
""" |
|
Convert a roadmap to markdown format for export or display |
|
""" |
|
markdown = f"# Personalized Learning Roadmap: {topic.title()}\n\n" |
|
markdown += f"*Skill Level: {skill_level.title()}*\n\n" |
|
|
|
|
|
markdown += "## Learning Path\n\n" |
|
for i, stage in enumerate(roadmap["learningPath"]): |
|
markdown += f"### {i+1}. {stage['step']} ({stage['difficulty']}) - {stage['time_estimate']}\n\n" |
|
markdown += f"{stage['description']}\n\n" |
|
|
|
markdown += "**Key Concepts:**\n" |
|
for concept in stage.get("key_concepts", []): |
|
markdown += f"- {concept}\n" |
|
markdown += "\n" |
|
|
|
if "milestones" in stage: |
|
markdown += "**Milestones:**\n" |
|
for milestone in stage["milestones"]: |
|
markdown += f"- {milestone}\n" |
|
markdown += "\n" |
|
|
|
if "practice_activities" in stage: |
|
markdown += "**Practice Activities:**\n" |
|
for activity in stage["practice_activities"]: |
|
markdown += f"- {activity}\n" |
|
markdown += "\n" |
|
|
|
|
|
markdown += "## Recommended Projects\n\n" |
|
for i, project in enumerate(roadmap["projectSuggestions"]): |
|
markdown += f"### {i+1}. {project['name']} ({project['complexity']})\n\n" |
|
markdown += f"{project['description']}\n\n" |
|
|
|
if "skills_practiced" in project: |
|
markdown += "**Skills Practiced:**\n" |
|
for skill in project["skills_practiced"]: |
|
markdown += f"- {skill}\n" |
|
markdown += "\n" |
|
|
|
markdown += "**Resources:**\n" |
|
for resource in project.get("resources", []): |
|
markdown += f"- {resource}\n" |
|
markdown += "\n" |
|
|
|
if "estimated_time" in project: |
|
markdown += f"**Estimated Time:** {project['estimated_time']}\n\n" |
|
|
|
|
|
markdown += "## Learning Resources\n\n" |
|
resources = roadmap.get("resources", {}) |
|
|
|
resource_categories = { |
|
"books": "Recommended Books", |
|
"online_courses": "Online Courses", |
|
"communities": "Communities", |
|
"tools": "Essential Tools", |
|
"practice_platforms": "Practice Platforms" |
|
} |
|
|
|
for category, title in resource_categories.items(): |
|
if category in resources and resources[category]: |
|
markdown += f"### {title}\n" |
|
for item in resources[category]: |
|
markdown += f"- {item}\n" |
|
markdown += "\n" |
|
|
|
|
|
if "career_insights" in roadmap and roadmap["career_insights"]: |
|
markdown += "## Career Opportunities\n\n" |
|
for insight in roadmap["career_insights"]: |
|
markdown += f"- {insight}\n" |
|
|
|
return markdown |
|
|
|
def load_courses(file_path: str = 'Coursera.csv') -> Optional[CourseRecommender]: |
|
""" |
|
Load courses from CSV and create a CourseRecommender instance |
|
""" |
|
console = Console() |
|
|
|
try: |
|
with console.status("[bold green]Loading course data...", spinner="dots"): |
|
df = pd.read_csv(file_path) |
|
time.sleep(1) |
|
console.print(f"[green]Successfully loaded {len(df)} courses![/green]") |
|
return CourseRecommender(df) |
|
except FileNotFoundError: |
|
console.print(f"[red]Error: {file_path} file not found.[/red]") |
|
return None |
|
except Exception as e: |
|
console.print(f"[red]An error occurred while reading the CSV: {e}[/red]") |
|
return None |
|
|
|
def format_courses_as_markdown(recommended_courses: pd.DataFrame) -> str: |
|
""" |
|
Format course recommendations as markdown - extracted common function |
|
""" |
|
courses_md = "# Recommended Courses\n\n" |
|
for i, (_, course) in enumerate(recommended_courses.iterrows()): |
|
courses_md += f"## {i+1}. {course.get('Course Name', 'N/A').title()}\n\n" |
|
courses_md += f"**Rating:** {course.get('Course Rating', 0):.1f} ★\n\n" |
|
courses_md += f"**Difficulty:** {course.get('Difficulty Level', 'N/A').title()}\n\n" |
|
courses_md += f"**Skills:** {course.get('Skills', 'N/A').title()}\n\n" |
|
courses_md += f"**Description:**\n{course.get('Description', 'No description available')}\n\n" |
|
if 'Course URL' in course and course['Course URL'] != '#': |
|
courses_md += f"[View Course]({course['Course URL']})\n\n" |
|
courses_md += "---\n\n" |
|
return courses_md |
|
|
|
def main(): |
|
console = Console() |
|
|
|
|
|
console.print(Panel.fit( |
|
"[bold cyan]Course Recommender & Learning Roadmap Generator[/bold cyan]\n" |
|
"[yellow]Find the perfect courses and create your personalized learning journey[/yellow]", |
|
box=box.DOUBLE)) |
|
|
|
recommender = load_courses() |
|
if recommender: |
|
console.print("[bold]Let's find the perfect learning path for you![/bold]\n") |
|
|
|
topic = console.input("[bold green]Enter the topic you want to learn about: [/bold green]") |
|
skill_level = console.input("[bold green]Enter your skill level (Beginner, Intermediate, Advanced): [/bold green]") |
|
|
|
use_ai = False |
|
user_goals = None |
|
|
|
if recommender.ai_enabled: |
|
use_ai = console.input("[bold green]Would you like AI-enhanced personalized recommendations? (y/n): [/bold green]").lower() == 'y' |
|
if use_ai: |
|
user_goals = console.input("[bold green]What are your learning goals or career objectives with this topic? [/bold green]") |
|
|
|
|
|
roadmap = recommender.generate_roadmap(topic, skill_level, user_goals, detailed=use_ai) |
|
recommender.display_roadmap(roadmap) |
|
|
|
|
|
export = console.input("\n[bold green]Would you like to export this roadmap to a markdown file? (y/n): [/bold green]").lower() == 'y' |
|
if export: |
|
markdown = recommender.roadmap_to_markdown(roadmap, topic, skill_level) |
|
filename = f"{topic.lower().replace(' ', '_')}_roadmap.md" |
|
with open(filename, "w") as f: |
|
f.write(markdown) |
|
console.print(f"[green]Roadmap exported to {filename}[/green]") |
|
|
|
console.print("\n[bold]Press Enter to see recommended courses...[/bold]") |
|
input() |
|
|
|
|
|
recommended_courses = recommender.recommend_courses(topic, skill_level, personalized=use_ai, user_goals=user_goals) |
|
recommender.display_recommended_courses(recommended_courses) |
|
|
|
|
|
while True: |
|
course_id = console.input("\n[bold green]Enter a course ID for more details (or 'q' to quit): [/bold green]") |
|
if course_id.lower() == 'q': |
|
break |
|
|
|
try: |
|
course_id = int(course_id) |
|
course = recommended_courses[recommended_courses['Course ID'] == course_id] |
|
if not course.empty: |
|
details = recommender.get_course_details(course.iloc[0]) |
|
|
|
console.print(Panel( |
|
f"[bold cyan]{details['name'].title()}[/bold cyan]\n\n" |
|
f"[yellow]Rating:[/yellow] {details['rating']} ★\n" |
|
f"[yellow]Difficulty:[/yellow] {details['difficulty'].title()}\n\n" |
|
f"[yellow]Skills:[/yellow] {details['skills'].title()}\n\n" |
|
f"[yellow]Description:[/yellow]\n{details['description']}\n\n" |
|
f"[link={details['url']}]View Course[/link]", |
|
title="Course Details", box=box.ROUNDED, width=100 |
|
)) |
|
else: |
|
console.print("[yellow]Course ID not found. Please try again.[/yellow]") |
|
except ValueError: |
|
console.print("[yellow]Please enter a valid course ID.[/yellow]") |
|
|
|
console.print(Panel("[bold cyan]Thank you for using the Course Recommender![/bold cyan]", box=box.ROUNDED)) |
|
|
|
|
|
def create_gradio_interface(recommender: CourseRecommender): |
|
""" |
|
Create a Gradio interface for the course recommender |
|
""" |
|
def recommend_and_generate(topic, skill_level, goals, use_ai): |
|
try: |
|
|
|
roadmap = recommender.generate_roadmap( |
|
topic=topic, |
|
skill_level=skill_level, |
|
user_goals=goals if goals else None, |
|
detailed=use_ai |
|
) |
|
|
|
|
|
recommended_courses = recommender.recommend_courses( |
|
topic=topic, |
|
skill_level=skill_level, |
|
personalized=use_ai, |
|
user_goals=goals if goals else None |
|
) |
|
|
|
|
|
roadmap_md = recommender.roadmap_to_markdown(roadmap, topic, skill_level) |
|
|
|
|
|
courses_md = format_courses_as_markdown(recommended_courses) |
|
|
|
return roadmap_md, courses_md |
|
except Exception as e: |
|
return f"Error: {str(e)}", "Could not generate course recommendations" |
|
|
|
with gr.Blocks(css=""" |
|
body, p, h1, h2, h3, h4, h5, h6, li, ul, a, span,em,strong, .gradio-container { |
|
background-color: #f9f9f9 !important; |
|
color: #000000 !important; |
|
} |
|
.gr-button, .gr-textbox, .gr-input, .gr-output, .gr-dropdown, .gr-checkbox, .gr-markdown, .gr-output, .gr-textbox-output { |
|
color: #000000 !important; |
|
} |
|
""") as demo: |
|
gr.Markdown("# 🎓 Learning Roadmap & Course Recommender ASCEND ") |
|
gr.Markdown("Generate a personalized learning roadmap and course recommendations.") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
topic_input = gr.Textbox(label="Topic you want to learn", placeholder="e.g. Python, Data Science, Machine Learning") |
|
skill_level = gr.Dropdown( |
|
["Beginner", "Intermediate", "Advanced"], |
|
label="Your current skill level" |
|
) |
|
goals_input = gr.Textbox( |
|
label="Your learning goals (optional)", |
|
placeholder="e.g. Career change, specific project, skill enhancement", |
|
lines=3 |
|
) |
|
use_ai = gr.Checkbox(label="Use AI-enhanced personalization") |
|
|
|
generate_btn = gr.Button("Generate Roadmap & Recommendations") |
|
|
|
with gr.Column(): |
|
roadmap_output = gr.Markdown(label="Your Personalized Learning Roadmap") |
|
courses_output = gr.Markdown(label="Recommended Courses") |
|
|
|
generate_btn.click( |
|
recommend_and_generate, |
|
inputs=[topic_input, skill_level, goals_input, use_ai], |
|
outputs=[roadmap_output, courses_output] |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
|
|
if os.getenv("SPACE_ID"): |
|
|
|
recommender = load_courses("Coursera.csv") |
|
if recommender: |
|
|
|
app = create_gradio_interface(recommender) |
|
app.launch() |
|
else: |
|
|
|
main() |