File size: 2,598 Bytes
571af42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7d03b
571af42
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import streamlit as st
from groq import Groq

# Securely set Groq API key (replace with your method for storing keys securely)
GROQ_API_KEY = "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"  # Replace with your Groq API key
os.environ["GROQ_API_KEY"] = GROQ_API_KEY

# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# Title and Introduction
st.title("Career Counselor App")
st.write("I’m here to guide you toward the perfect career based on your skills, interests, and experience.")

# User Input Section
st.header("Tell us about yourself")
age = st.number_input("Age:", min_value=18, max_value=65, step=1)
education = st.text_input("Educational Background:")
skills = st.text_area("List your skills (e.g., Python, teamwork, CAD):")
interests = st.text_area("What areas of interest do you have? (e.g., AI, design, civil engineering):")
experience = st.text_area("Describe your experience (if any):")

# Function to get career suggestions from Groq
def suggest_careers_groq(skills, interests, experience):
    try:
        # Prepare the prompt for Groq's chat model
        prompt = f"""
        Based on the following details, suggest suitable career paths, job market trends, and necessary qualifications:
        Skills: {skills}
        Interests: {interests}
        Experience: {experience}
        """
        
        # Call the Groq API
        chat_completion = client.chat.completions.create(
            messages=[
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            model="llama-3.3-70b-versatile",  # Specify the model
            stream=False,
        )
        
        # Extract and return the response
        response_content = chat_completion.choices[0].message.content
        return response_content
    
    except Exception as e:
        st.error(f"An error occurred while contacting Groq API: {e}")
        return None

# Display recommendations based on user input
if st.button("Get Career Advice"):
    if not skills or not interests:
        st.error("Please provide your skills and interests to get career advice.")
    else:
        st.subheader("Career Recommendations")
        response = suggest_careers_groq(skills, interests, experience)
        if response:
            st.write(response)
        else:
            st.write("No recommendations available. Please try again later.")
# Footer
st.markdown("---")
st.markdown(
    "<p style='text-align: center; font-size: 14px;'>Designed by: </p>",
    unsafe_allow_html=True
)