PZR0033
update in policy
5fb2a02
raw
history blame
1.21 kB
from env import Environment
from policy import Policy
from utils import myOptimizer
import pandas as pd
import numpy as np
if __name__ == "__main__":
data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
# data['Local time'] = pd.to_datetime(data['Local time'])
data = data.set_index('Local time')
print(data.index.min(), data.index.max())
date_split = '19.09.2022 17:55:00.000 GMT-0500'
train = data[:date_split]
test = data[date_split:]
print(train.head(10))
learning_rate = 0.01
first_momentum = 0.0
second_momentum = 0.0
transaction_cost = 0.0001
adaptation_rate = 0.01
state_size = 9
agent = Policy(input_channels=state_size)
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
history = []
for i in range(1, state_size):
c = train.iloc[i, :]['Close'] - train.iloc[i-1, :]['Close']
history.append(c)
env = Environment(train, history=history)
observation = env.reset()
for _ in range(9, 12):
action = agent(observation)
observation, reward, _ = env.step(action)
print(env.profits)