Spaces:
Runtime error
Runtime error
from env import Environment | |
from policy import Policy | |
from utils import myOptimizer | |
import pandas as pd | |
import numpy as np | |
if __name__ == "__main__": | |
data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv') | |
# data['Local time'] = pd.to_datetime(data['Local time']) | |
data = data.set_index('Local time') | |
print(data.index.min(), data.index.max()) | |
date_split = '19.09.2022 17:55:00.000 GMT-0500' | |
train = data[:date_split] | |
test = data[date_split:] | |
print(train.head(10)) | |
learning_rate = 0.01 | |
first_momentum = 0.0 | |
second_momentum = 0.0 | |
transaction_cost = 0.0001 | |
adaptation_rate = 0.01 | |
state_size = 9 | |
agent = Policy(input_channels=state_size) | |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost) | |
history = [] | |
for i in range(1, state_size): | |
c = train.iloc[i, :]['Close'] - train.iloc[i-1, :]['Close'] | |
history.append(c) | |
env = Environment(train, history=history) | |
observation = env.reset() | |
for _ in range(9, 12): | |
action = agent(observation) | |
observation, reward, _ = env.step(action) | |
print(env.profits) | |