Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from transformers import pipeline | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
HF_MODEL_NAME = "facebook/bart-large-mnli" # Smaller, free model that works well in Spaces | |
# --- Enhanced Agent Definition --- | |
class BasicAgent: | |
def __init__(self, hf_token=None): | |
print("Initializing LLM Agent...") | |
self.hf_token = hf_token | |
self.llm = None | |
try: | |
# Using a smaller model that works better in Spaces | |
self.llm = pipeline( | |
"text-generation", | |
model=HF_MODEL_NAME, | |
token=hf_token, | |
device_map="auto" | |
) | |
print("LLM initialized successfully") | |
except Exception as e: | |
print(f"Error initializing LLM: {e}") | |
# Fallback to simple responses if LLM fails | |
self.llm = None | |
def __call__(self, question: str) -> str: | |
if not self.llm: | |
return "This is a default answer (LLM not available)" | |
try: | |
print(f"Generating answer for: {question[:50]}...") | |
response = self.llm( | |
question, | |
max_length=100, | |
do_sample=True, | |
temperature=0.7 | |
) | |
return response[0]['generated_text'] | |
except Exception as e: | |
print(f"Error generating answer: {e}") | |
return f"Error generating answer: {e}" | |
def run_and_submit_all(request: gr.Request): | |
""" | |
Modified to work with Gradio's auth system | |
""" | |
# Get username from auth | |
if not request.username: | |
return "Please login with Hugging Face account", None | |
username = request.username | |
space_id = os.getenv("SPACE_ID") | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent | |
try: | |
agent = BasicAgent(hf_token=os.getenv("HF_TOKEN")) | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
# 2. Fetch Questions | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "No questions received from server", None | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# 3. Process Questions | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or not question_text: | |
continue | |
try: | |
answer = agent(question_text) | |
answers_payload.append({ | |
"task_id": task_id, | |
"submitted_answer": answer | |
}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": answer | |
}) | |
except Exception as e: | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"ERROR: {str(e)}" | |
}) | |
if not answers_payload: | |
return "No valid answers generated", pd.DataFrame(results_log) | |
# 4. Submit Answers | |
submission_data = { | |
"username": username, | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result = response.json() | |
status = ( | |
f"Submission Successful!\n" | |
f"User: {result.get('username')}\n" | |
f"Score: {result.get('score', 'N/A')}% " | |
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})\n" | |
f"Message: {result.get('message', '')}" | |
) | |
return status, pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Submission failed: {str(e)}", pd.DataFrame(results_log) | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# LLM Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Log in with your Hugging Face account | |
2. Click 'Run Evaluation' | |
3. View your results | |
""") | |
gr.LoginButton() | |
with gr.Row(): | |
run_btn = gr.Button("Run Evaluation & Submit Answers", variant="primary") | |
status_output = gr.Textbox(label="Status", interactive=False) | |
results_table = gr.DataFrame(label="Results", wrap=True) | |
run_btn.click( | |
fn=run_and_submit_all, | |
inputs=[], | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
demo.launch() |