ATK20's picture
Update app.py
8b83970 verified
raw
history blame
4.97 kB
import os
import gradio as gr
import requests
import pandas as pd
from transformers import pipeline
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_MODEL_NAME = "facebook/bart-large-mnli" # Smaller, free model that works well in Spaces
# --- Enhanced Agent Definition ---
class BasicAgent:
def __init__(self, hf_token=None):
print("Initializing LLM Agent...")
self.hf_token = hf_token
self.llm = None
try:
# Using a smaller model that works better in Spaces
self.llm = pipeline(
"text-generation",
model=HF_MODEL_NAME,
token=hf_token,
device_map="auto"
)
print("LLM initialized successfully")
except Exception as e:
print(f"Error initializing LLM: {e}")
# Fallback to simple responses if LLM fails
self.llm = None
def __call__(self, question: str) -> str:
if not self.llm:
return "This is a default answer (LLM not available)"
try:
print(f"Generating answer for: {question[:50]}...")
response = self.llm(
question,
max_length=100,
do_sample=True,
temperature=0.7
)
return response[0]['generated_text']
except Exception as e:
print(f"Error generating answer: {e}")
return f"Error generating answer: {e}"
def run_and_submit_all(request: gr.Request):
"""
Modified to work with Gradio's auth system
"""
# Get username from auth
if not request.username:
return "Please login with Hugging Face account", None
username = request.username
space_id = os.getenv("SPACE_ID")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent(hf_token=os.getenv("HF_TOKEN"))
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# 2. Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "No questions received from server", None
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Process Questions
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
try:
answer = agent(question_text)
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"ERROR: {str(e)}"
})
if not answers_payload:
return "No valid answers generated", pd.DataFrame(results_log)
# 4. Submit Answers
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result = response.json()
status = (
f"Submission Successful!\n"
f"User: {result.get('username')}\n"
f"Score: {result.get('score', 'N/A')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})\n"
f"Message: {result.get('message', '')}"
)
return status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {str(e)}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# LLM Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Log in with your Hugging Face account
2. Click 'Run Evaluation'
3. View your results
""")
gr.LoginButton()
with gr.Row():
run_btn = gr.Button("Run Evaluation & Submit Answers", variant="primary")
status_output = gr.Textbox(label="Status", interactive=False)
results_table = gr.DataFrame(label="Results", wrap=True)
run_btn.click(
fn=run_and_submit_all,
inputs=[],
outputs=[status_output, results_table]
)
if __name__ == "__main__":
demo.launch()