ATK20 commited on
Commit
182cf83
·
verified ·
1 Parent(s): e23ab90

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +121 -38
app.py CHANGED
@@ -1,35 +1,69 @@
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
- from huggingface_hub import InferenceClient
6
 
7
- # Constants
8
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
9
 
10
- # Basic Agent Definition using HF Inference API
11
  class BasicAgent:
12
- def __init__(self, token: str):
13
- print("BasicAgent initialized.")
14
- self.client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1", token=token)
15
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question: {question[:50]}...")
 
 
18
  try:
19
- prompt = f"[INST] {question.strip()} [/INST]"
20
- response = self.client.text_generation(prompt=prompt, max_new_tokens=300, temperature=0.7)
21
- answer = response.strip()
22
- print(f"Agent returning answer: {answer}")
23
- return answer
 
 
 
 
24
  except Exception as e:
25
- print(f"Error while querying HF model: {e}")
26
- return f"Error: {e}"
27
 
28
- def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
29
- space_id = os.getenv("SPACE_ID")
 
 
 
 
 
30
 
31
  if profile:
32
- username = f"{profile.username}"
33
  print(f"User logged in: {username}")
34
  else:
35
  print("User not logged in.")
@@ -41,10 +75,13 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
41
 
42
  # 1. Instantiate Agent
43
  try:
44
- agent = BasicAgent(token=token_input)
45
  except Exception as e:
46
  print(f"Error instantiating agent: {e}")
47
  return f"Error initializing agent: {e}", None
 
 
 
48
 
49
  # 2. Fetch Questions
50
  print(f"Fetching questions from: {questions_url}")
@@ -53,15 +90,16 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
53
  response.raise_for_status()
54
  questions_data = response.json()
55
  if not questions_data:
56
- print("Fetched questions list is empty.")
57
- return "Fetched questions list is empty or invalid format.", None
58
  print(f"Fetched {len(questions_data)} questions.")
59
  except requests.exceptions.RequestException as e:
60
  print(f"Error fetching questions: {e}")
61
  return f"Error fetching questions: {e}", None
62
  except requests.exceptions.JSONDecodeError as e:
63
- print(f"Error decoding JSON response from questions endpoint: {e}")
64
- return f"Error decoding server response for questions: {e}", None
 
65
  except Exception as e:
66
  print(f"An unexpected error occurred fetching questions: {e}")
67
  return f"An unexpected error occurred fetching questions: {e}", None
@@ -81,19 +119,15 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
81
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
82
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
83
  except Exception as e:
84
- print(f"Error running agent on task {task_id}: {e}")
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
86
 
87
  if not answers_payload:
88
  print("Agent did not produce any answers to submit.")
89
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
90
 
91
  # 4. Prepare Submission
92
- submission_data = {
93
- "username": username.strip(),
94
- "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
95
- "answers": answers_payload
96
- }
97
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
98
  print(status_update)
99
 
@@ -113,6 +147,22 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
113
  print("Submission successful.")
114
  results_df = pd.DataFrame(results_log)
115
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  except requests.exceptions.RequestException as e:
117
  status_message = f"Submission Failed: Network error - {e}"
118
  print(status_message)
@@ -124,30 +174,63 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
124
  results_df = pd.DataFrame(results_log)
125
  return status_message, results_df
126
 
127
- # Gradio Interface
 
128
  with gr.Blocks() as demo:
129
- gr.Markdown("# Basic Agent Evaluation Runner")
130
  gr.Markdown(
131
  """
132
  **Instructions:**
133
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
134
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
135
- 3. Paste your Hugging Face token below.
136
  4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
 
 
137
  """
138
  )
139
 
 
 
 
 
 
 
 
 
140
  gr.LoginButton()
141
- token_box = gr.Textbox(label="Enter your Hugging Face token", type="password", placeholder="hf_...")
142
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
143
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
144
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
145
 
146
  run_button.click(
147
  fn=run_and_submit_all,
148
- inputs=[gr.OAuthProfile(), token_box],
149
  outputs=[status_output, results_table]
150
  )
151
 
152
  if __name__ == "__main__":
153
- demo.launch(debug=True, share=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  import gradio as gr
3
  import requests
4
+ import inspect
5
  import pandas as pd
6
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
7
 
8
+ # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+ DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1" # Free model on Hugging Face
11
 
12
+ # --- Basic Agent Definition ---
13
  class BasicAgent:
14
+ def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL):
15
+ print("Initializing BasicAgent with LLM...")
16
+ self.hf_token = hf_token
17
+ self.model_name = model_name
18
+ self.llm = None
19
+ self.tokenizer = None
20
+
21
+ if hf_token:
22
+ try:
23
+ print(f"Loading model: {model_name}")
24
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
25
+ self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
26
+ self.llm = pipeline(
27
+ "text-generation",
28
+ model=self.model,
29
+ tokenizer=self.tokenizer,
30
+ device_map="auto"
31
+ )
32
+ print("Model loaded successfully")
33
+ except Exception as e:
34
+ print(f"Error loading model: {e}")
35
+ raise Exception(f"Could not load model: {e}")
36
+ else:
37
+ print("No HF token provided - agent will use default answers")
38
+
39
  def __call__(self, question: str) -> str:
40
+ if not self.llm:
41
+ return "This is a default answer (no LLM initialized)"
42
+
43
  try:
44
+ print(f"Generating answer for question: {question[:50]}...")
45
+ response = self.llm(
46
+ question,
47
+ max_new_tokens=150,
48
+ do_sample=True,
49
+ temperature=0.7,
50
+ top_p=0.9
51
+ )
52
+ return response[0]['generated_text']
53
  except Exception as e:
54
+ print(f"Error generating answer: {e}")
55
+ return f"Error generating answer: {e}"
56
 
57
+ def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
58
+ """
59
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
60
+ and displays the results.
61
+ """
62
+ # --- Determine HF Space Runtime URL and Repo URL ---
63
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
64
 
65
  if profile:
66
+ username= f"{profile.username}"
67
  print(f"User logged in: {username}")
68
  else:
69
  print("User not logged in.")
 
75
 
76
  # 1. Instantiate Agent
77
  try:
78
+ agent = BasicAgent(hf_token=hf_token)
79
  except Exception as e:
80
  print(f"Error instantiating agent: {e}")
81
  return f"Error initializing agent: {e}", None
82
+
83
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
84
+ print(agent_code)
85
 
86
  # 2. Fetch Questions
87
  print(f"Fetching questions from: {questions_url}")
 
90
  response.raise_for_status()
91
  questions_data = response.json()
92
  if not questions_data:
93
+ print("Fetched questions list is empty.")
94
+ return "Fetched questions list is empty or invalid format.", None
95
  print(f"Fetched {len(questions_data)} questions.")
96
  except requests.exceptions.RequestException as e:
97
  print(f"Error fetching questions: {e}")
98
  return f"Error fetching questions: {e}", None
99
  except requests.exceptions.JSONDecodeError as e:
100
+ print(f"Error decoding JSON response from questions endpoint: {e}")
101
+ print(f"Response text: {response.text[:500]}")
102
+ return f"Error decoding server response for questions: {e}", None
103
  except Exception as e:
104
  print(f"An unexpected error occurred fetching questions: {e}")
105
  return f"An unexpected error occurred fetching questions: {e}", None
 
119
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
120
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
121
  except Exception as e:
122
+ print(f"Error running agent on task {task_id}: {e}")
123
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
124
 
125
  if not answers_payload:
126
  print("Agent did not produce any answers to submit.")
127
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
128
 
129
  # 4. Prepare Submission
130
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
 
 
131
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
132
  print(status_update)
133
 
 
147
  print("Submission successful.")
148
  results_df = pd.DataFrame(results_log)
149
  return final_status, results_df
150
+ except requests.exceptions.HTTPError as e:
151
+ error_detail = f"Server responded with status {e.response.status_code}."
152
+ try:
153
+ error_json = e.response.json()
154
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
155
+ except requests.exceptions.JSONDecodeError:
156
+ error_detail += f" Response: {e.response.text[:500]}"
157
+ status_message = f"Submission Failed: {error_detail}"
158
+ print(status_message)
159
+ results_df = pd.DataFrame(results_log)
160
+ return status_message, results_df
161
+ except requests.exceptions.Timeout:
162
+ status_message = "Submission Failed: The request timed out."
163
+ print(status_message)
164
+ results_df = pd.DataFrame(results_log)
165
+ return status_message, results_df
166
  except requests.exceptions.RequestException as e:
167
  status_message = f"Submission Failed: Network error - {e}"
168
  print(status_message)
 
174
  results_df = pd.DataFrame(results_log)
175
  return status_message, results_df
176
 
177
+
178
+ # --- Build Gradio Interface using Blocks ---
179
  with gr.Blocks() as demo:
180
+ gr.Markdown("# LLM Agent Evaluation Runner")
181
  gr.Markdown(
182
  """
183
  **Instructions:**
184
+ 1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
185
+ 2. Enter your token below (it will be used only during this session)
186
+ 3. Log in to your Hugging Face account
187
  4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
188
+
189
+ ---
190
+ **Note:** The first run will take longer as it downloads the model.
191
  """
192
  )
193
 
194
+ with gr.Row():
195
+ hf_token_input = gr.Textbox(
196
+ label="Hugging Face API Token",
197
+ type="password",
198
+ placeholder="Enter your HF API token here (required for LLM)",
199
+ info="Get your token from https://huggingface.co/settings/tokens"
200
+ )
201
+
202
  gr.LoginButton()
203
+
204
  run_button = gr.Button("Run Evaluation & Submit All Answers")
205
+
206
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
207
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
208
 
209
  run_button.click(
210
  fn=run_and_submit_all,
211
+ inputs=[gr.OAuthProfile(), hf_token_input],
212
  outputs=[status_output, results_table]
213
  )
214
 
215
  if __name__ == "__main__":
216
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
217
+ space_host_startup = os.getenv("SPACE_HOST")
218
+ space_id_startup = os.getenv("SPACE_ID")
219
+
220
+ if space_host_startup:
221
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
222
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
223
+ else:
224
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
225
+
226
+ if space_id_startup:
227
+ print(f"✅ SPACE_ID found: {space_id_startup}")
228
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
229
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
230
+ else:
231
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
232
+
233
+ print("-"*(60 + len(" App Starting ")) + "\n")
234
+
235
+ print("Launching Gradio Interface for LLM Agent Evaluation...")
236
+ demo.launch(debug=True, share=False)