Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,69 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
-
from
|
6 |
|
7 |
-
# Constants
|
8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
9 |
|
10 |
-
# Basic Agent Definition
|
11 |
class BasicAgent:
|
12 |
-
def __init__(self,
|
13 |
-
print("BasicAgent
|
14 |
-
self.
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
-
|
|
|
|
|
18 |
try:
|
19 |
-
|
20 |
-
response = self.
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
except Exception as e:
|
25 |
-
print(f"Error
|
26 |
-
return f"Error: {e}"
|
27 |
|
28 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None,
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
if profile:
|
32 |
-
username
|
33 |
print(f"User logged in: {username}")
|
34 |
else:
|
35 |
print("User not logged in.")
|
@@ -41,10 +75,13 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
|
|
41 |
|
42 |
# 1. Instantiate Agent
|
43 |
try:
|
44 |
-
agent = BasicAgent(
|
45 |
except Exception as e:
|
46 |
print(f"Error instantiating agent: {e}")
|
47 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
48 |
|
49 |
# 2. Fetch Questions
|
50 |
print(f"Fetching questions from: {questions_url}")
|
@@ -53,15 +90,16 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
|
|
53 |
response.raise_for_status()
|
54 |
questions_data = response.json()
|
55 |
if not questions_data:
|
56 |
-
|
57 |
-
|
58 |
print(f"Fetched {len(questions_data)} questions.")
|
59 |
except requests.exceptions.RequestException as e:
|
60 |
print(f"Error fetching questions: {e}")
|
61 |
return f"Error fetching questions: {e}", None
|
62 |
except requests.exceptions.JSONDecodeError as e:
|
63 |
-
|
64 |
-
|
|
|
65 |
except Exception as e:
|
66 |
print(f"An unexpected error occurred fetching questions: {e}")
|
67 |
return f"An unexpected error occurred fetching questions: {e}", None
|
@@ -81,19 +119,15 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
|
|
81 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
82 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
83 |
except Exception as e:
|
84 |
-
|
85 |
-
|
86 |
|
87 |
if not answers_payload:
|
88 |
print("Agent did not produce any answers to submit.")
|
89 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
90 |
|
91 |
# 4. Prepare Submission
|
92 |
-
submission_data = {
|
93 |
-
"username": username.strip(),
|
94 |
-
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
|
95 |
-
"answers": answers_payload
|
96 |
-
}
|
97 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
98 |
print(status_update)
|
99 |
|
@@ -113,6 +147,22 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
|
|
113 |
print("Submission successful.")
|
114 |
results_df = pd.DataFrame(results_log)
|
115 |
return final_status, results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
except requests.exceptions.RequestException as e:
|
117 |
status_message = f"Submission Failed: Network error - {e}"
|
118 |
print(status_message)
|
@@ -124,30 +174,63 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, token_input: str):
|
|
124 |
results_df = pd.DataFrame(results_log)
|
125 |
return status_message, results_df
|
126 |
|
127 |
-
|
|
|
128 |
with gr.Blocks() as demo:
|
129 |
-
gr.Markdown("#
|
130 |
gr.Markdown(
|
131 |
"""
|
132 |
**Instructions:**
|
133 |
-
1.
|
134 |
-
2.
|
135 |
-
3.
|
136 |
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
|
|
|
137 |
"""
|
138 |
)
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
gr.LoginButton()
|
141 |
-
|
142 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
143 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
144 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
145 |
|
146 |
run_button.click(
|
147 |
fn=run_and_submit_all,
|
148 |
-
inputs=[gr.OAuthProfile(),
|
149 |
outputs=[status_output, results_table]
|
150 |
)
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
import inspect
|
5 |
import pandas as pd
|
6 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
7 |
|
8 |
+
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
+
DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1" # Free model on Hugging Face
|
11 |
|
12 |
+
# --- Basic Agent Definition ---
|
13 |
class BasicAgent:
|
14 |
+
def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL):
|
15 |
+
print("Initializing BasicAgent with LLM...")
|
16 |
+
self.hf_token = hf_token
|
17 |
+
self.model_name = model_name
|
18 |
+
self.llm = None
|
19 |
+
self.tokenizer = None
|
20 |
+
|
21 |
+
if hf_token:
|
22 |
+
try:
|
23 |
+
print(f"Loading model: {model_name}")
|
24 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
25 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
|
26 |
+
self.llm = pipeline(
|
27 |
+
"text-generation",
|
28 |
+
model=self.model,
|
29 |
+
tokenizer=self.tokenizer,
|
30 |
+
device_map="auto"
|
31 |
+
)
|
32 |
+
print("Model loaded successfully")
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error loading model: {e}")
|
35 |
+
raise Exception(f"Could not load model: {e}")
|
36 |
+
else:
|
37 |
+
print("No HF token provided - agent will use default answers")
|
38 |
+
|
39 |
def __call__(self, question: str) -> str:
|
40 |
+
if not self.llm:
|
41 |
+
return "This is a default answer (no LLM initialized)"
|
42 |
+
|
43 |
try:
|
44 |
+
print(f"Generating answer for question: {question[:50]}...")
|
45 |
+
response = self.llm(
|
46 |
+
question,
|
47 |
+
max_new_tokens=150,
|
48 |
+
do_sample=True,
|
49 |
+
temperature=0.7,
|
50 |
+
top_p=0.9
|
51 |
+
)
|
52 |
+
return response[0]['generated_text']
|
53 |
except Exception as e:
|
54 |
+
print(f"Error generating answer: {e}")
|
55 |
+
return f"Error generating answer: {e}"
|
56 |
|
57 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
|
58 |
+
"""
|
59 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
60 |
+
and displays the results.
|
61 |
+
"""
|
62 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
63 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
64 |
|
65 |
if profile:
|
66 |
+
username= f"{profile.username}"
|
67 |
print(f"User logged in: {username}")
|
68 |
else:
|
69 |
print("User not logged in.")
|
|
|
75 |
|
76 |
# 1. Instantiate Agent
|
77 |
try:
|
78 |
+
agent = BasicAgent(hf_token=hf_token)
|
79 |
except Exception as e:
|
80 |
print(f"Error instantiating agent: {e}")
|
81 |
return f"Error initializing agent: {e}", None
|
82 |
+
|
83 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
84 |
+
print(agent_code)
|
85 |
|
86 |
# 2. Fetch Questions
|
87 |
print(f"Fetching questions from: {questions_url}")
|
|
|
90 |
response.raise_for_status()
|
91 |
questions_data = response.json()
|
92 |
if not questions_data:
|
93 |
+
print("Fetched questions list is empty.")
|
94 |
+
return "Fetched questions list is empty or invalid format.", None
|
95 |
print(f"Fetched {len(questions_data)} questions.")
|
96 |
except requests.exceptions.RequestException as e:
|
97 |
print(f"Error fetching questions: {e}")
|
98 |
return f"Error fetching questions: {e}", None
|
99 |
except requests.exceptions.JSONDecodeError as e:
|
100 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
101 |
+
print(f"Response text: {response.text[:500]}")
|
102 |
+
return f"Error decoding server response for questions: {e}", None
|
103 |
except Exception as e:
|
104 |
print(f"An unexpected error occurred fetching questions: {e}")
|
105 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
119 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
120 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
121 |
except Exception as e:
|
122 |
+
print(f"Error running agent on task {task_id}: {e}")
|
123 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
124 |
|
125 |
if not answers_payload:
|
126 |
print("Agent did not produce any answers to submit.")
|
127 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
128 |
|
129 |
# 4. Prepare Submission
|
130 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
131 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
132 |
print(status_update)
|
133 |
|
|
|
147 |
print("Submission successful.")
|
148 |
results_df = pd.DataFrame(results_log)
|
149 |
return final_status, results_df
|
150 |
+
except requests.exceptions.HTTPError as e:
|
151 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
152 |
+
try:
|
153 |
+
error_json = e.response.json()
|
154 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
155 |
+
except requests.exceptions.JSONDecodeError:
|
156 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
157 |
+
status_message = f"Submission Failed: {error_detail}"
|
158 |
+
print(status_message)
|
159 |
+
results_df = pd.DataFrame(results_log)
|
160 |
+
return status_message, results_df
|
161 |
+
except requests.exceptions.Timeout:
|
162 |
+
status_message = "Submission Failed: The request timed out."
|
163 |
+
print(status_message)
|
164 |
+
results_df = pd.DataFrame(results_log)
|
165 |
+
return status_message, results_df
|
166 |
except requests.exceptions.RequestException as e:
|
167 |
status_message = f"Submission Failed: Network error - {e}"
|
168 |
print(status_message)
|
|
|
174 |
results_df = pd.DataFrame(results_log)
|
175 |
return status_message, results_df
|
176 |
|
177 |
+
|
178 |
+
# --- Build Gradio Interface using Blocks ---
|
179 |
with gr.Blocks() as demo:
|
180 |
+
gr.Markdown("# LLM Agent Evaluation Runner")
|
181 |
gr.Markdown(
|
182 |
"""
|
183 |
**Instructions:**
|
184 |
+
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
|
185 |
+
2. Enter your token below (it will be used only during this session)
|
186 |
+
3. Log in to your Hugging Face account
|
187 |
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
188 |
+
|
189 |
+
---
|
190 |
+
**Note:** The first run will take longer as it downloads the model.
|
191 |
"""
|
192 |
)
|
193 |
|
194 |
+
with gr.Row():
|
195 |
+
hf_token_input = gr.Textbox(
|
196 |
+
label="Hugging Face API Token",
|
197 |
+
type="password",
|
198 |
+
placeholder="Enter your HF API token here (required for LLM)",
|
199 |
+
info="Get your token from https://huggingface.co/settings/tokens"
|
200 |
+
)
|
201 |
+
|
202 |
gr.LoginButton()
|
203 |
+
|
204 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
205 |
+
|
206 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
207 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
208 |
|
209 |
run_button.click(
|
210 |
fn=run_and_submit_all,
|
211 |
+
inputs=[gr.OAuthProfile(), hf_token_input],
|
212 |
outputs=[status_output, results_table]
|
213 |
)
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
217 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
218 |
+
space_id_startup = os.getenv("SPACE_ID")
|
219 |
+
|
220 |
+
if space_host_startup:
|
221 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
222 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
223 |
+
else:
|
224 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
225 |
+
|
226 |
+
if space_id_startup:
|
227 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
228 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
229 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
230 |
+
else:
|
231 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
232 |
+
|
233 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
234 |
+
|
235 |
+
print("Launching Gradio Interface for LLM Agent Evaluation...")
|
236 |
+
demo.launch(debug=True, share=False)
|