Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 7 |
|
|
@@ -16,7 +15,6 @@ class BasicAgent:
|
|
| 16 |
self.hf_token = hf_token
|
| 17 |
self.model_name = model_name
|
| 18 |
self.llm = None
|
| 19 |
-
self.tokenizer = None
|
| 20 |
|
| 21 |
if hf_token:
|
| 22 |
try:
|
|
@@ -55,84 +53,59 @@ class BasicAgent:
|
|
| 55 |
return f"Error generating answer: {e}"
|
| 56 |
|
| 57 |
def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
"""
|
| 62 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 63 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 64 |
-
|
| 65 |
-
if profile:
|
| 66 |
-
username= f"{profile.username}"
|
| 67 |
-
print(f"User logged in: {username}")
|
| 68 |
-
else:
|
| 69 |
-
print("User not logged in.")
|
| 70 |
return "Please Login to Hugging Face with the button.", None
|
| 71 |
|
|
|
|
| 72 |
api_url = DEFAULT_API_URL
|
| 73 |
questions_url = f"{api_url}/questions"
|
| 74 |
submit_url = f"{api_url}/submit"
|
| 75 |
|
| 76 |
-
#
|
| 77 |
try:
|
| 78 |
agent = BasicAgent(hf_token=hf_token)
|
| 79 |
except Exception as e:
|
| 80 |
-
print(f"Error instantiating agent: {e}")
|
| 81 |
return f"Error initializing agent: {e}", None
|
| 82 |
|
| 83 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 84 |
-
print(agent_code)
|
| 85 |
|
| 86 |
-
#
|
| 87 |
-
print(f"Fetching questions from: {questions_url}")
|
| 88 |
try:
|
| 89 |
response = requests.get(questions_url, timeout=15)
|
| 90 |
response.raise_for_status()
|
| 91 |
questions_data = response.json()
|
| 92 |
if not questions_data:
|
| 93 |
-
|
| 94 |
-
return "Fetched questions list is empty or invalid format.", None
|
| 95 |
-
print(f"Fetched {len(questions_data)} questions.")
|
| 96 |
-
except requests.exceptions.RequestException as e:
|
| 97 |
-
print(f"Error fetching questions: {e}")
|
| 98 |
-
return f"Error fetching questions: {e}", None
|
| 99 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 100 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 101 |
-
print(f"Response text: {response.text[:500]}")
|
| 102 |
-
return f"Error decoding server response for questions: {e}", None
|
| 103 |
except Exception as e:
|
| 104 |
-
|
| 105 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
| 106 |
|
| 107 |
-
#
|
| 108 |
results_log = []
|
| 109 |
answers_payload = []
|
| 110 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
| 111 |
for item in questions_data:
|
| 112 |
task_id = item.get("task_id")
|
| 113 |
question_text = item.get("question")
|
| 114 |
if not task_id or question_text is None:
|
| 115 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
| 116 |
continue
|
| 117 |
try:
|
| 118 |
submitted_answer = agent(question_text)
|
| 119 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 120 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 121 |
except Exception as e:
|
| 122 |
-
|
| 123 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 124 |
|
| 125 |
if not answers_payload:
|
| 126 |
-
print("Agent did not produce any answers to submit.")
|
| 127 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 128 |
|
| 129 |
-
#
|
| 130 |
-
submission_data = {
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
try:
|
| 137 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 138 |
response.raise_for_status()
|
|
@@ -144,67 +117,35 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
|
|
| 144 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 145 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 146 |
)
|
| 147 |
-
|
| 148 |
-
results_df = pd.DataFrame(results_log)
|
| 149 |
-
return final_status, results_df
|
| 150 |
-
except requests.exceptions.HTTPError as e:
|
| 151 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
| 152 |
-
try:
|
| 153 |
-
error_json = e.response.json()
|
| 154 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 155 |
-
except requests.exceptions.JSONDecodeError:
|
| 156 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
| 157 |
-
status_message = f"Submission Failed: {error_detail}"
|
| 158 |
-
print(status_message)
|
| 159 |
-
results_df = pd.DataFrame(results_log)
|
| 160 |
-
return status_message, results_df
|
| 161 |
-
except requests.exceptions.Timeout:
|
| 162 |
-
status_message = "Submission Failed: The request timed out."
|
| 163 |
-
print(status_message)
|
| 164 |
-
results_df = pd.DataFrame(results_log)
|
| 165 |
-
return status_message, results_df
|
| 166 |
-
except requests.exceptions.RequestException as e:
|
| 167 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 168 |
-
print(status_message)
|
| 169 |
-
results_df = pd.DataFrame(results_log)
|
| 170 |
-
return status_message, results_df
|
| 171 |
except Exception as e:
|
| 172 |
-
|
| 173 |
-
print(status_message)
|
| 174 |
-
results_df = pd.DataFrame(results_log)
|
| 175 |
-
return status_message, results_df
|
| 176 |
-
|
| 177 |
|
| 178 |
-
# ---
|
| 179 |
with gr.Blocks() as demo:
|
| 180 |
gr.Markdown("# LLM Agent Evaluation Runner")
|
| 181 |
-
gr.Markdown(
|
| 182 |
-
"""
|
| 183 |
**Instructions:**
|
| 184 |
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
|
| 185 |
-
2. Enter your token below
|
| 186 |
3. Log in to your Hugging Face account
|
| 187 |
-
4. Click 'Run Evaluation & Submit All Answers'
|
| 188 |
-
|
| 189 |
-
---
|
| 190 |
-
**Note:** The first run will take longer as it downloads the model.
|
| 191 |
-
"""
|
| 192 |
-
)
|
| 193 |
|
| 194 |
with gr.Row():
|
| 195 |
hf_token_input = gr.Textbox(
|
| 196 |
label="Hugging Face API Token",
|
| 197 |
type="password",
|
| 198 |
-
placeholder="
|
| 199 |
-
info="
|
| 200 |
)
|
| 201 |
|
| 202 |
gr.LoginButton()
|
| 203 |
|
| 204 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 205 |
|
| 206 |
-
status_output = gr.Textbox(label="Run Status
|
| 207 |
-
results_table = gr.DataFrame(label="
|
| 208 |
|
| 209 |
run_button.click(
|
| 210 |
fn=run_and_submit_all,
|
|
@@ -213,24 +154,4 @@ with gr.Blocks() as demo:
|
|
| 213 |
)
|
| 214 |
|
| 215 |
if __name__ == "__main__":
|
| 216 |
-
|
| 217 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
| 218 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 219 |
-
|
| 220 |
-
if space_host_startup:
|
| 221 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 222 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 223 |
-
else:
|
| 224 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 225 |
-
|
| 226 |
-
if space_id_startup:
|
| 227 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 228 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 229 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 230 |
-
else:
|
| 231 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 232 |
-
|
| 233 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 234 |
-
|
| 235 |
-
print("Launching Gradio Interface for LLM Agent Evaluation...")
|
| 236 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 6 |
|
|
|
|
| 15 |
self.hf_token = hf_token
|
| 16 |
self.model_name = model_name
|
| 17 |
self.llm = None
|
|
|
|
| 18 |
|
| 19 |
if hf_token:
|
| 20 |
try:
|
|
|
|
| 53 |
return f"Error generating answer: {e}"
|
| 54 |
|
| 55 |
def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
|
| 56 |
+
"""Main function to run evaluation and submit answers"""
|
| 57 |
+
space_id = os.getenv("SPACE_ID")
|
| 58 |
+
if not profile:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
return "Please Login to Hugging Face with the button.", None
|
| 60 |
|
| 61 |
+
username = profile.username
|
| 62 |
api_url = DEFAULT_API_URL
|
| 63 |
questions_url = f"{api_url}/questions"
|
| 64 |
submit_url = f"{api_url}/submit"
|
| 65 |
|
| 66 |
+
# Initialize agent
|
| 67 |
try:
|
| 68 |
agent = BasicAgent(hf_token=hf_token)
|
| 69 |
except Exception as e:
|
|
|
|
| 70 |
return f"Error initializing agent: {e}", None
|
| 71 |
|
| 72 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
|
| 73 |
|
| 74 |
+
# Fetch questions
|
|
|
|
| 75 |
try:
|
| 76 |
response = requests.get(questions_url, timeout=15)
|
| 77 |
response.raise_for_status()
|
| 78 |
questions_data = response.json()
|
| 79 |
if not questions_data:
|
| 80 |
+
return "Fetched questions list is empty or invalid format.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
except Exception as e:
|
| 82 |
+
return f"Error fetching questions: {e}", None
|
|
|
|
| 83 |
|
| 84 |
+
# Process questions
|
| 85 |
results_log = []
|
| 86 |
answers_payload = []
|
|
|
|
| 87 |
for item in questions_data:
|
| 88 |
task_id = item.get("task_id")
|
| 89 |
question_text = item.get("question")
|
| 90 |
if not task_id or question_text is None:
|
|
|
|
| 91 |
continue
|
| 92 |
try:
|
| 93 |
submitted_answer = agent(question_text)
|
| 94 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 95 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 96 |
except Exception as e:
|
| 97 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
| 98 |
|
| 99 |
if not answers_payload:
|
|
|
|
| 100 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 101 |
|
| 102 |
+
# Submit answers
|
| 103 |
+
submission_data = {
|
| 104 |
+
"username": username.strip(),
|
| 105 |
+
"agent_code": agent_code,
|
| 106 |
+
"answers": answers_payload
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
try:
|
| 110 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 111 |
response.raise_for_status()
|
|
|
|
| 117 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 118 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 119 |
)
|
| 120 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
except Exception as e:
|
| 122 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
# --- Gradio Interface ---
|
| 125 |
with gr.Blocks() as demo:
|
| 126 |
gr.Markdown("# LLM Agent Evaluation Runner")
|
| 127 |
+
gr.Markdown("""
|
|
|
|
| 128 |
**Instructions:**
|
| 129 |
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
|
| 130 |
+
2. Enter your token below
|
| 131 |
3. Log in to your Hugging Face account
|
| 132 |
+
4. Click 'Run Evaluation & Submit All Answers'
|
| 133 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
with gr.Row():
|
| 136 |
hf_token_input = gr.Textbox(
|
| 137 |
label="Hugging Face API Token",
|
| 138 |
type="password",
|
| 139 |
+
placeholder="hf_xxxxxxxxxxxxxxxx",
|
| 140 |
+
info="Required for LLM access"
|
| 141 |
)
|
| 142 |
|
| 143 |
gr.LoginButton()
|
| 144 |
|
| 145 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 146 |
|
| 147 |
+
status_output = gr.Textbox(label="Run Status", lines=5)
|
| 148 |
+
results_table = gr.DataFrame(label="Results", wrap=True)
|
| 149 |
|
| 150 |
run_button.click(
|
| 151 |
fn=run_and_submit_all,
|
|
|
|
| 154 |
)
|
| 155 |
|
| 156 |
if __name__ == "__main__":
|
| 157 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|