Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
7 |
|
@@ -16,7 +15,6 @@ class BasicAgent:
|
|
16 |
self.hf_token = hf_token
|
17 |
self.model_name = model_name
|
18 |
self.llm = None
|
19 |
-
self.tokenizer = None
|
20 |
|
21 |
if hf_token:
|
22 |
try:
|
@@ -55,84 +53,59 @@ class BasicAgent:
|
|
55 |
return f"Error generating answer: {e}"
|
56 |
|
57 |
def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
|
58 |
-
"""
|
59 |
-
|
60 |
-
|
61 |
-
"""
|
62 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
63 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
64 |
-
|
65 |
-
if profile:
|
66 |
-
username= f"{profile.username}"
|
67 |
-
print(f"User logged in: {username}")
|
68 |
-
else:
|
69 |
-
print("User not logged in.")
|
70 |
return "Please Login to Hugging Face with the button.", None
|
71 |
|
|
|
72 |
api_url = DEFAULT_API_URL
|
73 |
questions_url = f"{api_url}/questions"
|
74 |
submit_url = f"{api_url}/submit"
|
75 |
|
76 |
-
#
|
77 |
try:
|
78 |
agent = BasicAgent(hf_token=hf_token)
|
79 |
except Exception as e:
|
80 |
-
print(f"Error instantiating agent: {e}")
|
81 |
return f"Error initializing agent: {e}", None
|
82 |
|
83 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
84 |
-
print(agent_code)
|
85 |
|
86 |
-
#
|
87 |
-
print(f"Fetching questions from: {questions_url}")
|
88 |
try:
|
89 |
response = requests.get(questions_url, timeout=15)
|
90 |
response.raise_for_status()
|
91 |
questions_data = response.json()
|
92 |
if not questions_data:
|
93 |
-
|
94 |
-
return "Fetched questions list is empty or invalid format.", None
|
95 |
-
print(f"Fetched {len(questions_data)} questions.")
|
96 |
-
except requests.exceptions.RequestException as e:
|
97 |
-
print(f"Error fetching questions: {e}")
|
98 |
-
return f"Error fetching questions: {e}", None
|
99 |
-
except requests.exceptions.JSONDecodeError as e:
|
100 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
101 |
-
print(f"Response text: {response.text[:500]}")
|
102 |
-
return f"Error decoding server response for questions: {e}", None
|
103 |
except Exception as e:
|
104 |
-
|
105 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
106 |
|
107 |
-
#
|
108 |
results_log = []
|
109 |
answers_payload = []
|
110 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
111 |
for item in questions_data:
|
112 |
task_id = item.get("task_id")
|
113 |
question_text = item.get("question")
|
114 |
if not task_id or question_text is None:
|
115 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
116 |
continue
|
117 |
try:
|
118 |
submitted_answer = agent(question_text)
|
119 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
120 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
121 |
except Exception as e:
|
122 |
-
|
123 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
124 |
|
125 |
if not answers_payload:
|
126 |
-
print("Agent did not produce any answers to submit.")
|
127 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
128 |
|
129 |
-
#
|
130 |
-
submission_data = {
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
try:
|
137 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
138 |
response.raise_for_status()
|
@@ -144,67 +117,35 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
|
|
144 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
145 |
f"Message: {result_data.get('message', 'No message received.')}"
|
146 |
)
|
147 |
-
|
148 |
-
results_df = pd.DataFrame(results_log)
|
149 |
-
return final_status, results_df
|
150 |
-
except requests.exceptions.HTTPError as e:
|
151 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
152 |
-
try:
|
153 |
-
error_json = e.response.json()
|
154 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
155 |
-
except requests.exceptions.JSONDecodeError:
|
156 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
157 |
-
status_message = f"Submission Failed: {error_detail}"
|
158 |
-
print(status_message)
|
159 |
-
results_df = pd.DataFrame(results_log)
|
160 |
-
return status_message, results_df
|
161 |
-
except requests.exceptions.Timeout:
|
162 |
-
status_message = "Submission Failed: The request timed out."
|
163 |
-
print(status_message)
|
164 |
-
results_df = pd.DataFrame(results_log)
|
165 |
-
return status_message, results_df
|
166 |
-
except requests.exceptions.RequestException as e:
|
167 |
-
status_message = f"Submission Failed: Network error - {e}"
|
168 |
-
print(status_message)
|
169 |
-
results_df = pd.DataFrame(results_log)
|
170 |
-
return status_message, results_df
|
171 |
except Exception as e:
|
172 |
-
|
173 |
-
print(status_message)
|
174 |
-
results_df = pd.DataFrame(results_log)
|
175 |
-
return status_message, results_df
|
176 |
-
|
177 |
|
178 |
-
# ---
|
179 |
with gr.Blocks() as demo:
|
180 |
gr.Markdown("# LLM Agent Evaluation Runner")
|
181 |
-
gr.Markdown(
|
182 |
-
"""
|
183 |
**Instructions:**
|
184 |
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
|
185 |
-
2. Enter your token below
|
186 |
3. Log in to your Hugging Face account
|
187 |
-
4. Click 'Run Evaluation & Submit All Answers'
|
188 |
-
|
189 |
-
---
|
190 |
-
**Note:** The first run will take longer as it downloads the model.
|
191 |
-
"""
|
192 |
-
)
|
193 |
|
194 |
with gr.Row():
|
195 |
hf_token_input = gr.Textbox(
|
196 |
label="Hugging Face API Token",
|
197 |
type="password",
|
198 |
-
placeholder="
|
199 |
-
info="
|
200 |
)
|
201 |
|
202 |
gr.LoginButton()
|
203 |
|
204 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
205 |
|
206 |
-
status_output = gr.Textbox(label="Run Status
|
207 |
-
results_table = gr.DataFrame(label="
|
208 |
|
209 |
run_button.click(
|
210 |
fn=run_and_submit_all,
|
@@ -213,24 +154,4 @@ with gr.Blocks() as demo:
|
|
213 |
)
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
-
|
217 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
218 |
-
space_id_startup = os.getenv("SPACE_ID")
|
219 |
-
|
220 |
-
if space_host_startup:
|
221 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
222 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
223 |
-
else:
|
224 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
225 |
-
|
226 |
-
if space_id_startup:
|
227 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
228 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
229 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
230 |
-
else:
|
231 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
232 |
-
|
233 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
234 |
-
|
235 |
-
print("Launching Gradio Interface for LLM Agent Evaluation...")
|
236 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
6 |
|
|
|
15 |
self.hf_token = hf_token
|
16 |
self.model_name = model_name
|
17 |
self.llm = None
|
|
|
18 |
|
19 |
if hf_token:
|
20 |
try:
|
|
|
53 |
return f"Error generating answer: {e}"
|
54 |
|
55 |
def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
|
56 |
+
"""Main function to run evaluation and submit answers"""
|
57 |
+
space_id = os.getenv("SPACE_ID")
|
58 |
+
if not profile:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return "Please Login to Hugging Face with the button.", None
|
60 |
|
61 |
+
username = profile.username
|
62 |
api_url = DEFAULT_API_URL
|
63 |
questions_url = f"{api_url}/questions"
|
64 |
submit_url = f"{api_url}/submit"
|
65 |
|
66 |
+
# Initialize agent
|
67 |
try:
|
68 |
agent = BasicAgent(hf_token=hf_token)
|
69 |
except Exception as e:
|
|
|
70 |
return f"Error initializing agent: {e}", None
|
71 |
|
72 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
73 |
|
74 |
+
# Fetch questions
|
|
|
75 |
try:
|
76 |
response = requests.get(questions_url, timeout=15)
|
77 |
response.raise_for_status()
|
78 |
questions_data = response.json()
|
79 |
if not questions_data:
|
80 |
+
return "Fetched questions list is empty or invalid format.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
except Exception as e:
|
82 |
+
return f"Error fetching questions: {e}", None
|
|
|
83 |
|
84 |
+
# Process questions
|
85 |
results_log = []
|
86 |
answers_payload = []
|
|
|
87 |
for item in questions_data:
|
88 |
task_id = item.get("task_id")
|
89 |
question_text = item.get("question")
|
90 |
if not task_id or question_text is None:
|
|
|
91 |
continue
|
92 |
try:
|
93 |
submitted_answer = agent(question_text)
|
94 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
95 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
96 |
except Exception as e:
|
97 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
98 |
|
99 |
if not answers_payload:
|
|
|
100 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
101 |
|
102 |
+
# Submit answers
|
103 |
+
submission_data = {
|
104 |
+
"username": username.strip(),
|
105 |
+
"agent_code": agent_code,
|
106 |
+
"answers": answers_payload
|
107 |
+
}
|
108 |
+
|
109 |
try:
|
110 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
111 |
response.raise_for_status()
|
|
|
117 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
118 |
f"Message: {result_data.get('message', 'No message received.')}"
|
119 |
)
|
120 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
except Exception as e:
|
122 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
# --- Gradio Interface ---
|
125 |
with gr.Blocks() as demo:
|
126 |
gr.Markdown("# LLM Agent Evaluation Runner")
|
127 |
+
gr.Markdown("""
|
|
|
128 |
**Instructions:**
|
129 |
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
|
130 |
+
2. Enter your token below
|
131 |
3. Log in to your Hugging Face account
|
132 |
+
4. Click 'Run Evaluation & Submit All Answers'
|
133 |
+
""")
|
|
|
|
|
|
|
|
|
134 |
|
135 |
with gr.Row():
|
136 |
hf_token_input = gr.Textbox(
|
137 |
label="Hugging Face API Token",
|
138 |
type="password",
|
139 |
+
placeholder="hf_xxxxxxxxxxxxxxxx",
|
140 |
+
info="Required for LLM access"
|
141 |
)
|
142 |
|
143 |
gr.LoginButton()
|
144 |
|
145 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
146 |
|
147 |
+
status_output = gr.Textbox(label="Run Status", lines=5)
|
148 |
+
results_table = gr.DataFrame(label="Results", wrap=True)
|
149 |
|
150 |
run_button.click(
|
151 |
fn=run_and_submit_all,
|
|
|
154 |
)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|