Update app.py
Browse files
app.py
CHANGED
@@ -1,118 +1,427 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
|
|
|
7 |
# --- Constants ---
|
8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
9 |
-
HF_MODEL_NAME = "facebook/bart-large-mnli" # Free model that works in Spaces
|
10 |
|
11 |
-
# ---
|
12 |
-
class
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
try:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
except Exception as e:
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
def
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
try:
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
except Exception as e:
|
33 |
return f"Error: {str(e)}"
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
space_id = os.getenv("SPACE_ID")
|
43 |
api_url = DEFAULT_API_URL
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
#
|
|
|
|
|
|
|
|
|
|
|
47 |
try:
|
48 |
-
response = requests.get(
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
-
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
try:
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
"submitted_answer": answer
|
62 |
-
})
|
63 |
-
results.append({
|
64 |
-
"Task ID": q.get("task_id"),
|
65 |
-
"Question": q.get("question"),
|
66 |
-
"Answer": answer
|
67 |
-
})
|
68 |
except Exception as e:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
try:
|
77 |
-
response = requests.post(
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
}
|
84 |
-
|
85 |
-
|
86 |
-
result = response.json()
|
87 |
-
return (
|
88 |
-
f"Success! Score: {result.get('score', 'N/A')}%\n"
|
89 |
-
f"Correct: {result.get('correct_count', 0)}/{result.get('total_attempted', 0)}",
|
90 |
-
pd.DataFrame(results)
|
91 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
except Exception as e:
|
93 |
-
|
|
|
|
|
|
|
94 |
|
95 |
-
|
|
|
96 |
with gr.Blocks() as demo:
|
97 |
-
gr.Markdown("#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
1.
|
102 |
-
2.
|
103 |
-
3.
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
106 |
gr.LoginButton()
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
113 |
fn=run_and_submit_all,
|
114 |
-
outputs=[
|
115 |
)
|
116 |
|
117 |
if __name__ == "__main__":
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
import inspect
|
5 |
import pandas as pd
|
6 |
+
import re
|
7 |
+
import json
|
8 |
+
import math
|
9 |
+
import time
|
10 |
+
from typing import Dict, Any, List, Optional, Union
|
11 |
|
12 |
+
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
15 |
|
16 |
+
# --- Tool Definitions ---
|
17 |
+
class Tools:
|
18 |
+
@staticmethod
|
19 |
+
def calculator(expression: str) -> Union[float, str]:
|
20 |
+
"""Safely evaluate mathematical expressions"""
|
21 |
+
# Clean the expression to only contain valid math operations
|
22 |
try:
|
23 |
+
# Extract numbers and operators
|
24 |
+
safe_expr = re.sub(r'[^0-9+\-*/().%\s]', '', expression)
|
25 |
+
# Calculate using a safer approach than eval()
|
26 |
+
# Use a restricted namespace for evaluation
|
27 |
+
safe_globals = {"__builtins__": {}}
|
28 |
+
safe_locals = {"math": math}
|
29 |
+
# Add basic math functions
|
30 |
+
for func in ['sin', 'cos', 'tan', 'sqrt', 'log', 'exp', 'floor', 'ceil']:
|
31 |
+
safe_locals[func] = getattr(math, func)
|
32 |
+
|
33 |
+
result = eval(safe_expr, safe_globals, safe_locals)
|
34 |
+
return result
|
35 |
except Exception as e:
|
36 |
+
return f"Error in calculation: {str(e)}"
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def search(query: str) -> str:
|
40 |
+
"""Simulate a web search with predefined responses for common queries"""
|
41 |
+
# This is a mock search function - in a real scenario, you might
|
42 |
+
# use a proper search API like SerpAPI or DuckDuckGo
|
43 |
+
knowledge_base = {
|
44 |
+
"population": "The current world population is approximately 8 billion people.",
|
45 |
+
"capital of france": "The capital of France is Paris.",
|
46 |
+
"largest planet": "Jupiter is the largest planet in our solar system.",
|
47 |
+
"tallest mountain": "Mount Everest is the tallest mountain above sea level at 8,848.86 meters.",
|
48 |
+
"deepest ocean": "The Mariana Trench is the deepest ocean trench, located in the Pacific Ocean.",
|
49 |
+
"president": "The current president of the United States is Joe Biden (as of 2024).",
|
50 |
+
"water boiling point": "Water boils at 100 degrees Celsius (212 degrees Fahrenheit) at standard pressure.",
|
51 |
+
"pi": "The mathematical constant pi (π) is approximately 3.14159.",
|
52 |
+
"speed of light": "The speed of light in vacuum is approximately 299,792,458 meters per second.",
|
53 |
+
"human body temperature": "Normal human body temperature is around 37 degrees Celsius (98.6 degrees Fahrenheit)."
|
54 |
+
}
|
55 |
+
|
56 |
+
# Try to find a relevant answer in our knowledge base
|
57 |
+
for key, value in knowledge_base.items():
|
58 |
+
if key in query.lower():
|
59 |
+
return value
|
60 |
|
61 |
+
return "No relevant information found in the knowledge base."
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def date_info() -> str:
|
65 |
+
"""Provide the current date"""
|
66 |
+
return time.strftime("%Y-%m-%d")
|
67 |
+
|
68 |
+
# --- LLM Interface ---
|
69 |
+
class LLMInterface:
|
70 |
+
@staticmethod
|
71 |
+
def query_llm(prompt: str) -> str:
|
72 |
+
"""Query a free LLM through Hugging Face's inference API"""
|
73 |
try:
|
74 |
+
# Using FLAN-T5-XXL which is available for free
|
75 |
+
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
|
76 |
+
headers = {"Content-Type": "application/json"}
|
77 |
+
|
78 |
+
# Use a well-formatted prompt
|
79 |
+
payload = {
|
80 |
+
"inputs": prompt,
|
81 |
+
"parameters": {"max_length": 200, "temperature": 0.7}
|
82 |
+
}
|
83 |
+
|
84 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=10)
|
85 |
+
|
86 |
+
if response.status_code == 200:
|
87 |
+
result = response.json()
|
88 |
+
# Handle different response formats
|
89 |
+
if isinstance(result, list) and len(result) > 0:
|
90 |
+
return result[0].get("generated_text", "").strip()
|
91 |
+
elif isinstance(result, dict):
|
92 |
+
return result.get("generated_text", "").strip()
|
93 |
+
else:
|
94 |
+
return str(result).strip()
|
95 |
+
else:
|
96 |
+
# Fallback for rate limits or API issues
|
97 |
+
return "The model is currently unavailable. Please try again later."
|
98 |
+
|
99 |
except Exception as e:
|
100 |
return f"Error: {str(e)}"
|
101 |
|
102 |
+
# --- Advanced Agent Implementation ---
|
103 |
+
class BasicAgent:
|
104 |
+
def __init__(self):
|
105 |
+
print("Advanced Agent initialized.")
|
106 |
+
self.tools = {
|
107 |
+
"calculator": Tools.calculator,
|
108 |
+
"search": Tools.search,
|
109 |
+
"date": Tools.date_info
|
110 |
+
}
|
111 |
+
self.llm = LLMInterface()
|
112 |
+
|
113 |
+
def __call__(self, question: str) -> str:
|
114 |
+
print(f"Agent received question: {question[:50]}...")
|
115 |
+
|
116 |
+
# Step 1: Analyze the question
|
117 |
+
tool_needed, tool_name = self._analyze_question(question)
|
118 |
+
|
119 |
+
# Step 2: Use appropriate tool or direct answer
|
120 |
+
if tool_needed:
|
121 |
+
if tool_name == "calculator":
|
122 |
+
# Extract the math expression from the question
|
123 |
+
expression = self._extract_math_expression(question)
|
124 |
+
if expression:
|
125 |
+
result = self.tools["calculator"](expression)
|
126 |
+
# Format numerical answers appropriately
|
127 |
+
if isinstance(result, (int, float)):
|
128 |
+
if result == int(result):
|
129 |
+
answer = str(int(result)) # Remove decimal for whole numbers
|
130 |
+
else:
|
131 |
+
answer = str(result) # Keep decimal for fractions
|
132 |
+
else:
|
133 |
+
answer = str(result)
|
134 |
+
else:
|
135 |
+
answer = "Unable to extract a mathematical expression from the question."
|
136 |
+
|
137 |
+
elif tool_name == "search":
|
138 |
+
result = self.tools["search"](question)
|
139 |
+
answer = self._extract_direct_answer(question, result)
|
140 |
+
|
141 |
+
elif tool_name == "date":
|
142 |
+
result = self.tools["date"]()
|
143 |
+
answer = result
|
144 |
+
|
145 |
+
else:
|
146 |
+
# Use LLM for other types of questions
|
147 |
+
answer = self._get_answer_from_llm(question)
|
148 |
+
else:
|
149 |
+
# Direct answer for simpler questions
|
150 |
+
answer = self._get_answer_from_llm(question)
|
151 |
+
|
152 |
+
print(f"Agent returning answer: {answer[:50]}...")
|
153 |
+
return answer
|
154 |
+
|
155 |
+
def _analyze_question(self, question: str) -> tuple:
|
156 |
+
"""Determine if the question requires a tool and which one"""
|
157 |
+
# Check for mathematical questions
|
158 |
+
math_patterns = [
|
159 |
+
r'calculate', r'compute', r'what is \d+', r'how much is',
|
160 |
+
r'sum of', r'multiply', r'divide', r'subtract', r'plus', r'minus',
|
161 |
+
r'\d+\s*[\+\-\*\/\%]\s*\d+', r'squared', r'cubed', r'square root'
|
162 |
+
]
|
163 |
+
|
164 |
+
for pattern in math_patterns:
|
165 |
+
if re.search(pattern, question.lower()):
|
166 |
+
return True, "calculator"
|
167 |
+
|
168 |
+
# Check for factual questions that might need search
|
169 |
+
search_patterns = [
|
170 |
+
r'^what is', r'^who is', r'^where is', r'^when', r'^how many',
|
171 |
+
r'capital of', r'largest', r'tallest', r'population', r'president',
|
172 |
+
r'temperature', r'boiling point', r'freezing point', r'speed of'
|
173 |
+
]
|
174 |
+
|
175 |
+
for pattern in search_patterns:
|
176 |
+
if re.search(pattern, question.lower()):
|
177 |
+
return True, "search"
|
178 |
+
|
179 |
+
# Check for date-related questions
|
180 |
+
date_patterns = [r'what day is today', r'current date', r'today\'s date']
|
181 |
+
|
182 |
+
for pattern in date_patterns:
|
183 |
+
if re.search(pattern, question.lower()):
|
184 |
+
return True, "date"
|
185 |
+
|
186 |
+
# Default to direct answer
|
187 |
+
return False, None
|
188 |
+
|
189 |
+
def _extract_math_expression(self, question: str) -> str:
|
190 |
+
"""Extract a mathematical expression from the question"""
|
191 |
+
# Look for common pattern: "Calculate X" or "What is X"
|
192 |
+
patterns = [
|
193 |
+
r'calculate\s+(.*?)(?:\?|$)',
|
194 |
+
r'what is\s+(.*?)(?:\?|$)',
|
195 |
+
r'compute\s+(.*?)(?:\?|$)',
|
196 |
+
r'find\s+(.*?)(?:\?|$)',
|
197 |
+
r'how much is\s+(.*?)(?:\?|$)'
|
198 |
+
]
|
199 |
+
|
200 |
+
for pattern in patterns:
|
201 |
+
match = re.search(pattern, question.lower())
|
202 |
+
if match:
|
203 |
+
expression = match.group(1).strip()
|
204 |
+
# Further clean the expression
|
205 |
+
expression = re.sub(r'[^0-9+\-*/().%\s]', '', expression)
|
206 |
+
return expression
|
207 |
+
|
208 |
+
# If no clear pattern, attempt to extract any mathematical operation
|
209 |
+
nums_and_ops = re.findall(r'(\d+(?:\.\d+)?|\+|\-|\*|\/|\(|\)|\%)', question)
|
210 |
+
if nums_and_ops:
|
211 |
+
return ''.join(nums_and_ops)
|
212 |
+
|
213 |
+
return ""
|
214 |
+
|
215 |
+
def _extract_direct_answer(self, question: str, search_result: str) -> str:
|
216 |
+
"""Extract a concise answer from search results based on the question"""
|
217 |
+
# For simple factual questions, return the search result directly
|
218 |
+
return search_result
|
219 |
+
|
220 |
+
def _get_answer_from_llm(self, question: str) -> str:
|
221 |
+
"""Get an answer from the LLM with appropriate prompting"""
|
222 |
+
prompt = f"""
|
223 |
+
Answer the following question with a very concise, direct response:
|
224 |
+
|
225 |
+
Question: {question}
|
226 |
+
|
227 |
+
Answer in 1-2 sentences maximum, focusing only on the specific information requested.
|
228 |
+
"""
|
229 |
+
|
230 |
+
# Simple responses for common questions to avoid LLM latency
|
231 |
+
common_answers = {
|
232 |
+
"what color is the sky": "Blue.",
|
233 |
+
"how many days in a week": "7 days.",
|
234 |
+
"how many months in a year": "12 months.",
|
235 |
+
"what is the capital of france": "Paris.",
|
236 |
+
"what is the capital of japan": "Tokyo.",
|
237 |
+
"what is the capital of italy": "Rome.",
|
238 |
+
"what is the capital of germany": "Berlin.",
|
239 |
+
"what is the capital of spain": "Madrid.",
|
240 |
+
"what is water made of": "H2O (hydrogen and oxygen).",
|
241 |
+
"who wrote romeo and juliet": "William Shakespeare.",
|
242 |
+
"who painted the mona lisa": "Leonardo da Vinci.",
|
243 |
+
"what is the largest ocean": "The Pacific Ocean.",
|
244 |
+
"what is the smallest planet": "Mercury."
|
245 |
+
}
|
246 |
+
|
247 |
+
# Check if we have a hardcoded answer
|
248 |
+
for key, answer in common_answers.items():
|
249 |
+
if question.lower().strip('?').strip() == key:
|
250 |
+
return answer
|
251 |
+
|
252 |
+
# If no hardcoded answer, use the LLM
|
253 |
+
return self.llm.query_llm(prompt)
|
254 |
+
|
255 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
256 |
+
"""
|
257 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
258 |
+
and displays the results.
|
259 |
+
"""
|
260 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
261 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
262 |
+
|
263 |
+
if profile:
|
264 |
+
username= f"{profile.username}"
|
265 |
+
print(f"User logged in: {username}")
|
266 |
+
else:
|
267 |
+
print("User not logged in.")
|
268 |
+
return "Please Login to Hugging Face with the button.", None
|
269 |
|
|
|
270 |
api_url = DEFAULT_API_URL
|
271 |
+
questions_url = f"{api_url}/questions"
|
272 |
+
submit_url = f"{api_url}/submit"
|
273 |
+
|
274 |
+
# 1. Instantiate Agent (now using our improved agent)
|
275 |
+
try:
|
276 |
+
agent = BasicAgent()
|
277 |
+
except Exception as e:
|
278 |
+
print(f"Error instantiating agent: {e}")
|
279 |
+
return f"Error initializing agent: {e}", None
|
280 |
|
281 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase
|
282 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
283 |
+
print(agent_code)
|
284 |
+
|
285 |
+
# 2. Fetch Questions
|
286 |
+
print(f"Fetching questions from: {questions_url}")
|
287 |
try:
|
288 |
+
response = requests.get(questions_url, timeout=15)
|
289 |
+
response.raise_for_status()
|
290 |
+
questions_data = response.json()
|
291 |
+
if not questions_data:
|
292 |
+
print("Fetched questions list is empty.")
|
293 |
+
return "Fetched questions list is empty or invalid format.", None
|
294 |
+
print(f"Fetched {len(questions_data)} questions.")
|
295 |
+
except requests.exceptions.RequestException as e:
|
296 |
+
print(f"Error fetching questions: {e}")
|
297 |
+
return f"Error fetching questions: {e}", None
|
298 |
+
except requests.exceptions.JSONDecodeError as e:
|
299 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
300 |
+
print(f"Response text: {response.text[:500]}")
|
301 |
+
return f"Error decoding server response for questions: {e}", None
|
302 |
except Exception as e:
|
303 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
304 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
305 |
|
306 |
+
# 3. Run your Agent
|
307 |
+
results_log = []
|
308 |
+
answers_payload = []
|
309 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
310 |
+
for item in questions_data:
|
311 |
+
task_id = item.get("task_id")
|
312 |
+
question_text = item.get("question")
|
313 |
+
if not task_id or question_text is None:
|
314 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
315 |
+
continue
|
316 |
try:
|
317 |
+
submitted_answer = agent(question_text)
|
318 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
319 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
except Exception as e:
|
321 |
+
print(f"Error running agent on task {task_id}: {e}")
|
322 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
323 |
+
|
324 |
+
if not answers_payload:
|
325 |
+
print("Agent did not produce any answers to submit.")
|
326 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
327 |
|
328 |
+
# 4. Prepare Submission
|
329 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
330 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
331 |
+
print(status_update)
|
332 |
+
|
333 |
+
# 5. Submit
|
334 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
335 |
try:
|
336 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
337 |
+
response.raise_for_status()
|
338 |
+
result_data = response.json()
|
339 |
+
final_status = (
|
340 |
+
f"Submission Successful!\n"
|
341 |
+
f"User: {result_data.get('username')}\n"
|
342 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
343 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
344 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
|
|
|
|
|
|
|
|
|
|
345 |
)
|
346 |
+
print("Submission successful.")
|
347 |
+
results_df = pd.DataFrame(results_log)
|
348 |
+
return final_status, results_df
|
349 |
+
except requests.exceptions.HTTPError as e:
|
350 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
351 |
+
try:
|
352 |
+
error_json = e.response.json()
|
353 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
354 |
+
except requests.exceptions.JSONDecodeError:
|
355 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
356 |
+
status_message = f"Submission Failed: {error_detail}"
|
357 |
+
print(status_message)
|
358 |
+
results_df = pd.DataFrame(results_log)
|
359 |
+
return status_message, results_df
|
360 |
+
except requests.exceptions.Timeout:
|
361 |
+
status_message = "Submission Failed: The request timed out."
|
362 |
+
print(status_message)
|
363 |
+
results_df = pd.DataFrame(results_log)
|
364 |
+
return status_message, results_df
|
365 |
+
except requests.exceptions.RequestException as e:
|
366 |
+
status_message = f"Submission Failed: Network error - {e}"
|
367 |
+
print(status_message)
|
368 |
+
results_df = pd.DataFrame(results_log)
|
369 |
+
return status_message, results_df
|
370 |
except Exception as e:
|
371 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
372 |
+
print(status_message)
|
373 |
+
results_df = pd.DataFrame(results_log)
|
374 |
+
return status_message, results_df
|
375 |
|
376 |
+
|
377 |
+
# --- Build Gradio Interface using Blocks ---
|
378 |
with gr.Blocks() as demo:
|
379 |
+
gr.Markdown("# Advanced Agent Evaluation Runner")
|
380 |
+
gr.Markdown(
|
381 |
+
"""
|
382 |
+
**Instructions:**
|
383 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
384 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
385 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
386 |
+
---
|
387 |
+
**Disclaimers:**
|
388 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
389 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
390 |
+
"""
|
391 |
+
)
|
392 |
+
|
393 |
gr.LoginButton()
|
394 |
+
|
395 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
396 |
+
|
397 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
398 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
399 |
+
|
400 |
+
run_button.click(
|
401 |
fn=run_and_submit_all,
|
402 |
+
outputs=[status_output, results_table]
|
403 |
)
|
404 |
|
405 |
if __name__ == "__main__":
|
406 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
407 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
408 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
409 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
410 |
+
|
411 |
+
if space_host_startup:
|
412 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
413 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
414 |
+
else:
|
415 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
416 |
+
|
417 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
418 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
419 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
420 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
421 |
+
else:
|
422 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
423 |
+
|
424 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
425 |
+
|
426 |
+
print("Launching Gradio Interface for Advanced Agent Evaluation...")
|
427 |
+
demo.launch(debug=True, share=False)
|