ATK20 commited on
Commit
e85b640
·
verified ·
1 Parent(s): 81917a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -79
app.py CHANGED
@@ -1,34 +1,49 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
  class BasicAgent:
14
  def __init__(self):
15
  print("BasicAgent initialized.")
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,15 +53,12 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
  # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
@@ -55,16 +67,15 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
@@ -84,15 +95,15 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
  # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
  print(status_update)
98
 
@@ -112,22 +123,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
112
  print("Submission successful.")
113
  results_df = pd.DataFrame(results_log)
114
  return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
  except requests.exceptions.RequestException as e:
132
  status_message = f"Submission Failed: Network error - {e}"
133
  print(status_message)
@@ -140,57 +135,24 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
140
  return status_message, results_df
141
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
  gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
4
+ import openai
5
  import pandas as pd
6
 
7
+ # Constants
 
8
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
9
+ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # Assuming you're using OpenAI's GPT model for the agent.
10
 
11
+ # Basic Agent Definition
 
12
  class BasicAgent:
13
  def __init__(self):
14
  print("BasicAgent initialized.")
15
+ openai.api_key = OPENAI_API_KEY # Set OpenAI API key for GPT
16
+
17
  def __call__(self, question: str) -> str:
18
+ print(f"Agent received question: {question[:50]}...")
19
+
20
+ # Use OpenAI GPT to generate a response for the question
21
+ try:
22
+ response = openai.Completion.create(
23
+ engine="text-davinci-003", # or another GPT engine
24
+ prompt=question,
25
+ max_tokens=150,
26
+ n=1,
27
+ stop=None,
28
+ temperature=0.7,
29
+ )
30
+ fixed_answer = response.choices[0].text.strip()
31
+ print(f"Agent returning answer: {fixed_answer}")
32
+ return fixed_answer
33
+ except Exception as e:
34
+ print(f"Error while fetching response from GPT: {e}")
35
+ return f"Error: {e}"
36
 
37
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
38
  """
39
  Fetches all questions, runs the BasicAgent on them, submits all answers,
40
  and displays the results.
41
  """
42
  # --- Determine HF Space Runtime URL and Repo URL ---
43
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
44
 
45
  if profile:
46
+ username = f"{profile.username}"
47
  print(f"User logged in: {username}")
48
  else:
49
  print("User not logged in.")
 
53
  questions_url = f"{api_url}/questions"
54
  submit_url = f"{api_url}/submit"
55
 
56
+ # 1. Instantiate Agent
57
  try:
58
  agent = BasicAgent()
59
  except Exception as e:
60
  print(f"Error instantiating agent: {e}")
61
  return f"Error initializing agent: {e}", None
 
 
 
62
 
63
  # 2. Fetch Questions
64
  print(f"Fetching questions from: {questions_url}")
 
67
  response.raise_for_status()
68
  questions_data = response.json()
69
  if not questions_data:
70
+ print("Fetched questions list is empty.")
71
+ return "Fetched questions list is empty or invalid format.", None
72
  print(f"Fetched {len(questions_data)} questions.")
73
  except requests.exceptions.RequestException as e:
74
  print(f"Error fetching questions: {e}")
75
  return f"Error fetching questions: {e}", None
76
  except requests.exceptions.JSONDecodeError as e:
77
+ print(f"Error decoding JSON response from questions endpoint: {e}")
78
+ return f"Error decoding server response for questions: {e}", None
 
79
  except Exception as e:
80
  print(f"An unexpected error occurred fetching questions: {e}")
81
  return f"An unexpected error occurred fetching questions: {e}", None
 
95
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
96
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
97
  except Exception as e:
98
+ print(f"Error running agent on task {task_id}: {e}")
99
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
100
 
101
  if not answers_payload:
102
  print("Agent did not produce any answers to submit.")
103
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
104
 
105
  # 4. Prepare Submission
106
+ submission_data = {"username": username.strip(), "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", "answers": answers_payload}
107
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
108
  print(status_update)
109
 
 
123
  print("Submission successful.")
124
  results_df = pd.DataFrame(results_log)
125
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  except requests.exceptions.RequestException as e:
127
  status_message = f"Submission Failed: Network error - {e}"
128
  print(status_message)
 
135
  return status_message, results_df
136
 
137
 
138
+ # Gradio Interface
139
  with gr.Blocks() as demo:
140
  gr.Markdown("# Basic Agent Evaluation Runner")
141
  gr.Markdown(
142
  """
143
  **Instructions:**
144
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
145
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
146
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
 
 
 
 
 
147
  """
148
  )
149
 
150
  gr.LoginButton()
 
151
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
152
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
153
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
154
 
155
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
156
 
157
  if __name__ == "__main__":
158
+ demo.launch(debug=True, share=False)