import os import gradio as gr import requests import pandas as pd from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1" # --- Basic Agent Definition --- class BasicAgent: def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL): print("Initializing BasicAgent with LLM...") self.hf_token = hf_token self.model_name = model_name self.llm = None if hf_token: try: print(f"Loading model: {model_name}") self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token) self.llm = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, device_map="auto" ) print("Model loaded successfully") except Exception as e: print(f"Error loading model: {e}") raise Exception(f"Could not load model: {e}") else: print("No HF token provided - agent will use default answers") def __call__(self, question: str) -> str: if not self.llm: return "This is a default answer (no LLM initialized)" try: print(f"Generating answer for question: {question[:50]}...") response = self.llm( question, max_new_tokens=150, do_sample=True, temperature=0.7, top_p=0.9 ) return response[0]['generated_text'] except Exception as e: print(f"Error generating answer: {e}") return f"Error generating answer: {e}" def run_and_submit_all(hf_token: str, request: gr.Request): """Main function to run evaluation and submit answers""" # Get user info from the request if not request.username: return "Please Login to Hugging Face with the button.", None username = request.username space_id = os.getenv("SPACE_ID") api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # Initialize agent try: agent = BasicAgent(hf_token=hf_token) except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" # Fetch questions try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None except Exception as e: return f"Error fetching questions: {e}", None # Process questions results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # Submit answers submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# LLM Agent Evaluation Runner") gr.Markdown(""" **Instructions:** 1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens) 2. Enter your token below 3. Log in to your Hugging Face account 4. Click 'Run Evaluation & Submit All Answers' """) with gr.Row(): hf_token_input = gr.Textbox( label="Hugging Face API Token", type="password", placeholder="hf_xxxxxxxxxxxxxxxx", info="Required for LLM access" ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status", lines=5) results_table = gr.DataFrame(label="Results", wrap=True) run_button.click( fn=run_and_submit_all, inputs=[hf_token_input], outputs=[status_output, results_table] ) if __name__ == "__main__": demo.launch()