Spaces:
Build error
Build error
File size: 4,885 Bytes
c5d9a7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
#pip install GoogleNews
#pip install --upgrade GoogleNews
import streamlit as st
from GoogleNews import GoogleNews
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
import string
import re
from nltk.corpus import stopwords
from sklearn.metrics.pairwise import cosine_similarity
import sklearn
import time
googlenews = GoogleNews()
googlenews = GoogleNews(lang='ar')
googlenews.clear()
st.write("""
Arabic Fake News Detection System
A system designed as a part of master project
done by Reem AlFouzan
Supervised by : Dr, Abdulla al mutairi
""")
#df = pd.read_csv('News.csv')
text_input = st.text_input (''' **Enter the text** ''')
if len(text_input) != 0:
inputt = []
inputt = pd.DataFrame([text_input])
googlenews.search(inputt.iloc[0,0])
googlenews.get_news(inputt.iloc[0,0])
result_0 = googlenews.page_at(1)
total = len(result_0)
st.markdown(f"Credibility rate : { result_0 }")
st.markdown(f"Credibility rate : { total }")
# time.sleep(100)
# if len(result_0) == 0:
# desc_1 = ['لا يوجد نتائج للخبر ']
# link_1 = ['لا يوجد مصدر']
# if len(result_0) != 0:
# desc_1 = googlenews.get_texts()
# link_1 = googlenews.get_links()
# for i in list(range(2, 70)):
# result = googlenews.page_at(i)
# desc = googlenews.get_texts()
# link = googlenews.get_links()
# desc_1 = desc_1 + desc
# link_1 = link_1 + link
# column_names = ["text", 'link']
# df = pd.DataFrame(columns = column_names)
# df['text'] = desc_1
# df['link'] = link_1
# for letter in '#.][!XR':
# df['text'] = df['text'].astype(str).str.replace(letter,'')
# inputt[0] = inputt[0].astype(str).str.replace(letter,'')
# arabic_punctuations = '''`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ'''
# english_punctuations = string.punctuation
# punctuations_list = arabic_punctuations + english_punctuations
# def remove_punctuations(text):
# translator = str.maketrans('', '', punctuations_list)
# return text.translate(translator)
# def normalize_arabic(text):
# text = re.sub("[إأآا]", "ا", text)
# text = re.sub("ى", "ي", text)
# text = re.sub("ة", "ه", text)
# text = re.sub("گ", "ك", text)
# return text
# def remove_repeating_char(text):
# return re.sub(r'(.)\1+', r'\1', text)
# def processPost(text):
# #Replace @username with empty string
# text = re.sub('@[^\s]+', ' ', text)
# #Convert www.* or https?://* to " "
# text = re.sub('((www\.[^\s]+)|(https?://[^\s]+))',' ',text)
# #Replace #word with word
# text = re.sub(r'#([^\s]+)', r'\1', text)
# # remove punctuations
# text= remove_punctuations(text)
# # normalize the text
# text= normalize_arabic(text)
# # remove repeated letters
# text=remove_repeating_char(text)
# return text
# df['text'] = df['text'].apply(lambda x: processPost(x))
# inputt[0] = inputt[0].apply(lambda x: processPost(x))
# st.markdown(f"my input is : { inputt.iloc[0,0] }")
# #input=input.apply(lambda x: processPost(x))
# vectorizer = TfidfVectorizer()
# vectors = vectorizer.fit_transform(df['text'])
# text_tfidf = pd.DataFrame(vectors.toarray())
# traninput = vectorizer.transform(inputt[0])
# traninput = traninput.toarray()
# cosine_sim = cosine_similarity(traninput,text_tfidf)
# top = np.max(cosine_sim)
# if top >= .85 :
# prediction = 'الخبر صحيح'
# elif (top < .85) and (top >= .6) :
# prediction = 'الخبر مظلل '
# elif top < .6 :
# prediction = 'الخبر كاذب '
# st.markdown(f"most similar news is: { df['text'].iloc[np.argmax(np.array(cosine_sim[0]))] }")
# st.markdown(f"Source url : {df['link'].iloc[np.argmax(np.array(cosine_sim[0]))]}")
# st.markdown(f"Credibility rate : { np.max(cosine_sim)}")
# st.markdown(f"system prediction: { prediction}")
# df.to_csv('Students.csv', sep ='\t')
st.sidebar.markdown('مواقع اخباريه معتمده ')
st.sidebar.markdown("[العربية](https://www.alarabiya.net/)")
st.sidebar.markdown("[الجزيرة نت](https://www.aljazeera.net/news/)")
st.sidebar.markdown("[وكالة الانباء الكويتية](https://www.kuna.net.kw/Default.aspx?language=ar)")
#st.markdown('test') |