File size: 11,933 Bytes
0af0679 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## AI Project Using Tools\n",
"\n",
"This is a chatbot that uses AI tools to make decisions, enhancing it's autonomy feature. It uses pushover SMS integration to send a notification whenever an answer to a question is unknown and recording user details.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Importing the required libraries\n",
"\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import json\n",
"import os\n",
"import requests\n",
"from pypdf import PdfReader\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Loading environment variables\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set up Pushover credentials and API endpoint\n",
"\n",
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
"pushover_user = os.getenv(\"PUSHOVER_USER\")\n",
"pushover_token = os.getenv(\"PUSHOVER_TOKEN\")\n",
"pushover_url = \"https://api.pushover.net/1/messages.json\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Setting up Deepseek Client\n",
"\n",
"deepseek_client = OpenAI(\n",
" api_key=deepseek_api_key, \n",
" base_url=\"https://api.deepseek.com\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Function to send a push notification via pushover and test sending a push notification\n",
"def push(message):\n",
" print(f\"Push: {message}\")\n",
" payload = {\"user\": pushover_user, \"token\": pushover_token, \"message\": message}\n",
" requests.post(pushover_url, data=payload)\n",
"push(\"Hey! This is a test notification\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\" Record user details an send a push notification\n",
"- email: email address that will be provided by the user\n",
"- name: name provided by user, default respond with Name not provided\n",
"- notes: information provided by user, default respond with not provided\n",
"\n",
"\"\"\"\n",
"def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
" push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
" return {\"recorded\": \"ok\"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\" Function to record an unknown question and send a push notification\n",
"- question: question that is out of context\n",
"\"\"\"\n",
"def record_unknown_question(question):\n",
" push(f\"Recording {question} asked that I couldn't answer\")\n",
" return {\"recorded\": \"ok\"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\" First tool called record_user_details with a JSON schema\n",
"This tool get the email address of user(mandatory), name(optional) and notes(optional) if the user wants to get in touch\n",
"\"\"\"\n",
"record_user_details_json = {\n",
" \"name\": \"record_user_details\",\n",
" \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"email\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The email address of this user\"\n",
" },\n",
" \"name\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The user's name, if they provided it\"\n",
" }\n",
" ,\n",
" \"notes\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
" }\n",
" },\n",
" \"required\": [\"email\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\" Second tool called record_unknown_question with a JSON schema\n",
"This tool will record the question that is unknown and couldn't be answered. The question field is mandatory.\n",
"\"\"\"\n",
"record_unknown_question_json = {\n",
" \"name\": \"record_unknown_question\",\n",
" \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"question\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The question that couldn't be answered\"\n",
" },\n",
" },\n",
" \"required\": [\"question\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This is a list of the two tools confurd and can be called by an LLM\n",
"tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
" {\"type\": \"function\", \"function\": record_unknown_question_json}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tools"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This function can take a list of tool calls, and run them using if logic.\n",
"\n",
"def handle_tool_calls(tool_calls):\n",
" results = []\n",
" for tool_call in tool_calls:\n",
" tool_name = tool_call.function.name\n",
" arguments = json.loads(tool_call.function.arguments)\n",
" print(f\"Tool called: {tool_name}\", flush=True)\n",
"\n",
" if tool_name == \"record_user_details\":\n",
" result = record_user_details(**arguments)\n",
" elif tool_name == \"record_unknown_question\":\n",
" result = record_unknown_question(**arguments)\n",
"\n",
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
" return results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Test the record_unknown_question tool directly\n",
"globals()[\"record_unknown_question\"](\"this is a really hard question\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Handle tool calls dynamically using globals() (preferred version)\n",
"\n",
"def handle_tool_calls(tool_calls):\n",
" results = []\n",
" for tool_call in tool_calls:\n",
" tool_name = tool_call.function.name\n",
" arguments = json.loads(tool_call.function.arguments)\n",
" print(f\"Tool called: {tool_name}\", flush=True)\n",
" tool = globals().get(tool_name)\n",
" result = tool(**arguments) if tool else {}\n",
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
" return results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load LinkedIn PDF and summary.txt for user context\n",
"reader = PdfReader(\"me/Profile.pdf\")\n",
"linkedin = \"\"\n",
"for page in reader.pages:\n",
" text = page.extract_text()\n",
" if text:\n",
" linkedin += text\n",
"\n",
"with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
" summary = f.read()\n",
"\n",
"name = \"Ian Kisali\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Build the system prompt for the LLM, including user info and context\n",
"system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
"particularly questions related to {name}'s career, background, skills and experience. \\\n",
"Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
"If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
"If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
"\n",
"system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
"system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Main chat function: interacts with LLM, handles tool calls, manages history\n",
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" done = False\n",
" while not done:\n",
"\n",
" # This is the call to the LLM - see that we pass in the tools json\n",
"\n",
" response = deepseek_client.chat.completions.create(model=\"deepseek-chat\", messages=messages, tools=tools)\n",
"\n",
" finish_reason = response.choices[0].finish_reason\n",
" \n",
" # If the LLM wants to call a tool, we do that!\n",
" \n",
" if finish_reason==\"tool_calls\":\n",
" message = response.choices[0].message\n",
" tool_calls = message.tool_calls\n",
" results = handle_tool_calls(tool_calls)\n",
" messages.append(message)\n",
" messages.extend(results)\n",
" else:\n",
" done = True\n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Launch Gradio chat interface with the chat function\n",
"gr.ChatInterface(chat, type=\"messages\").launch()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|