File size: 11,933 Bytes
0af0679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## AI Project Using Tools\n",
    "\n",
    "This is a chatbot that uses AI tools to make decisions, enhancing it's autonomy feature. It uses pushover SMS integration to send a notification whenever an answer to a question is unknown and recording user details.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing the required libraries\n",
    "\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import json\n",
    "import os\n",
    "import requests\n",
    "from pypdf import PdfReader\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Loading environment variables\n",
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#  Set up Pushover credentials and API endpoint\n",
    "\n",
    "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
    "pushover_user = os.getenv(\"PUSHOVER_USER\")\n",
    "pushover_token = os.getenv(\"PUSHOVER_TOKEN\")\n",
    "pushover_url = \"https://api.pushover.net/1/messages.json\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Setting up Deepseek Client\n",
    "\n",
    "deepseek_client = OpenAI(\n",
    "    api_key=deepseek_api_key, \n",
    "    base_url=\"https://api.deepseek.com\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to send a push notification via pushover and test sending a push notification\n",
    "def push(message):\n",
    "    print(f\"Push: {message}\")\n",
    "    payload = {\"user\": pushover_user, \"token\": pushover_token, \"message\": message}\n",
    "    requests.post(pushover_url, data=payload)\n",
    "push(\"Hey! This is a test notification\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\" Record user details an send a push notification\n",
    "- email: email address that will be provided by the user\n",
    "- name: name provided by user, default respond with Name not provided\n",
    "- notes: information provided by user, default respond with not provided\n",
    "\n",
    "\"\"\"\n",
    "def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
    "    push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
    "    return {\"recorded\": \"ok\"}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\" Function to record an unknown question and send a push notification\n",
    "- question: question that is out of context\n",
    "\"\"\"\n",
    "def record_unknown_question(question):\n",
    "    push(f\"Recording {question} asked that I couldn't answer\")\n",
    "    return {\"recorded\": \"ok\"}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\" First tool called record_user_details with a JSON schema\n",
    "This tool get the email address of user(mandatory), name(optional) and notes(optional) if the user wants to get in touch\n",
    "\"\"\"\n",
    "record_user_details_json = {\n",
    "    \"name\": \"record_user_details\",\n",
    "    \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
    "    \"parameters\": {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"email\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"The email address of this user\"\n",
    "            },\n",
    "            \"name\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"The user's name, if they provided it\"\n",
    "            }\n",
    "            ,\n",
    "            \"notes\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
    "            }\n",
    "        },\n",
    "        \"required\": [\"email\"],\n",
    "        \"additionalProperties\": False\n",
    "    }\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\" Second tool called record_unknown_question with a JSON schema\n",
    "This tool will record the question that is unknown and couldn't be answered. The question field is mandatory.\n",
    "\"\"\"\n",
    "record_unknown_question_json = {\n",
    "    \"name\": \"record_unknown_question\",\n",
    "    \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
    "    \"parameters\": {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"question\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"The question that couldn't be answered\"\n",
    "            },\n",
    "        },\n",
    "        \"required\": [\"question\"],\n",
    "        \"additionalProperties\": False\n",
    "    }\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# This is a list of the two tools confurd and can be called by an LLM\n",
    "tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
    "        {\"type\": \"function\", \"function\": record_unknown_question_json}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tools"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# This function can take a list of tool calls, and run them using if logic.\n",
    "\n",
    "def handle_tool_calls(tool_calls):\n",
    "    results = []\n",
    "    for tool_call in tool_calls:\n",
    "        tool_name = tool_call.function.name\n",
    "        arguments = json.loads(tool_call.function.arguments)\n",
    "        print(f\"Tool called: {tool_name}\", flush=True)\n",
    "\n",
    "        if tool_name == \"record_user_details\":\n",
    "            result = record_user_details(**arguments)\n",
    "        elif tool_name == \"record_unknown_question\":\n",
    "            result = record_unknown_question(**arguments)\n",
    "\n",
    "        results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
    "    return results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Test the record_unknown_question tool directly\n",
    "globals()[\"record_unknown_question\"](\"this is a really hard question\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Handle tool calls dynamically using globals() (preferred version)\n",
    "\n",
    "def handle_tool_calls(tool_calls):\n",
    "    results = []\n",
    "    for tool_call in tool_calls:\n",
    "        tool_name = tool_call.function.name\n",
    "        arguments = json.loads(tool_call.function.arguments)\n",
    "        print(f\"Tool called: {tool_name}\", flush=True)\n",
    "        tool = globals().get(tool_name)\n",
    "        result = tool(**arguments) if tool else {}\n",
    "        results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
    "    return results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load LinkedIn PDF and summary.txt for user context\n",
    "reader = PdfReader(\"me/Profile.pdf\")\n",
    "linkedin = \"\"\n",
    "for page in reader.pages:\n",
    "    text = page.extract_text()\n",
    "    if text:\n",
    "        linkedin += text\n",
    "\n",
    "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
    "    summary = f.read()\n",
    "\n",
    "name = \"Ian Kisali\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Build the system prompt for the LLM, including user info and context\n",
    "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
    "particularly questions related to {name}'s career, background, skills and experience. \\\n",
    "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
    "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
    "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
    "If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
    "\n",
    "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
    "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Main chat function: interacts with LLM, handles tool calls, manages history\n",
    "def chat(message, history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    done = False\n",
    "    while not done:\n",
    "\n",
    "        # This is the call to the LLM - see that we pass in the tools json\n",
    "\n",
    "        response = deepseek_client.chat.completions.create(model=\"deepseek-chat\", messages=messages, tools=tools)\n",
    "\n",
    "        finish_reason = response.choices[0].finish_reason\n",
    "        \n",
    "        # If the LLM wants to call a tool, we do that!\n",
    "         \n",
    "        if finish_reason==\"tool_calls\":\n",
    "            message = response.choices[0].message\n",
    "            tool_calls = message.tool_calls\n",
    "            results = handle_tool_calls(tool_calls)\n",
    "            messages.append(message)\n",
    "            messages.extend(results)\n",
    "        else:\n",
    "            done = True\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Launch Gradio chat interface with the chat function\n",
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}