File size: 10,591 Bytes
0af0679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
    "\n",
    "import os\n",
    "import json\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "from anthropic import Anthropic\n",
    "from IPython.display import Markdown, display"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Load and check your API keys</b>\n",
    "</br>\n",
    "<b>- - - - - - - - - - - - - - - -</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Always remember to do this!\n",
    "load_dotenv(override=True)\n",
    "\n",
    "# Function to check and display API key status\n",
    "def check_api_key(key_name):\n",
    "    key = os.getenv(key_name)\n",
    "    \n",
    "    if key:\n",
    "        # Always show the first 7 characters of the key\n",
    "        print(f\"✓ {key_name} API Key exists and begins... ({key[:7]})\")\n",
    "        return True\n",
    "    else:\n",
    "        print(f\"⚠️ {key_name} API Key not set\")\n",
    "        return False\n",
    "\n",
    "# Check each API key (the function now returns True or False)\n",
    "has_openai = check_api_key('OPENAI_API_KEY')\n",
    "has_anthropic = check_api_key('ANTHROPIC_API_KEY')\n",
    "has_google = check_api_key('GOOGLE_API_KEY')\n",
    "has_deepseek = check_api_key('DEEPSEEK_API_KEY')\n",
    "has_groq = check_api_key('GROQ_API_KEY')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "vscode": {
     "languageId": "html"
    }
   },
   "source": [
    "<b>Input for travel planner</b></br>\n",
    "Describe yourself, your travel companions, and the destination you plan to visit.\n",
    "</br>\n",
    "<b>- - - - - - - - - - - - - - - -</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Provide a description of you or your family. Age, interests, etc.\n",
    "person_description = \"family with a 3 year-old\"\n",
    "# Provide the name of the specific destination or attraction and country\n",
    "destination = \"Belgium, Brussels\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>- - - - - - - - - - - - - - - -</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = f\"\"\"\n",
    "Given the following description of a person or family:\n",
    "{person_description}\n",
    "\n",
    "And the requested travel destination or attraction:\n",
    "{destination}\n",
    "\n",
    "Provide a concise response including:\n",
    "\n",
    "1. Fit rating (1-10) specifically for this person or family.\n",
    "2. One compelling positive reason why this destination suits them.\n",
    "3. One notable drawback they should consider before visiting.\n",
    "4. One important additional aspect to consider related to this location.\n",
    "5. Suggest a few additional places that might also be of interest to them that are very close to the destination.\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def run_prompt_on_available_models(prompt):\n",
    "    \"\"\"\n",
    "    Run a prompt on all available AI models based on API keys.\n",
    "    Continues processing even if some models fail.\n",
    "    \"\"\"\n",
    "    results = {}\n",
    "    api_response = [{\"role\": \"user\", \"content\": prompt}]\n",
    "    \n",
    "    # OpenAI\n",
    "    if check_api_key('OPENAI_API_KEY'):\n",
    "        try:\n",
    "            model_name = \"gpt-4o-mini\"\n",
    "            openai_client = OpenAI()\n",
    "            response = openai_client.chat.completions.create(model=model_name, messages=api_response)\n",
    "            results[model_name] = response.choices[0].message.content\n",
    "            print(f\"✓ Got response from {model_name}\")\n",
    "        except Exception as e:\n",
    "            print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
    "            # Continue with other models\n",
    "    \n",
    "    # Anthropic\n",
    "    if check_api_key('ANTHROPIC_API_KEY'):\n",
    "        try:\n",
    "            model_name = \"claude-3-7-sonnet-latest\"\n",
    "            # Create new client each time\n",
    "            claude = Anthropic()\n",
    "            \n",
    "            # Use messages directly \n",
    "            response = claude.messages.create(\n",
    "                model=model_name,\n",
    "                messages=[{\"role\": \"user\", \"content\": prompt}],\n",
    "                max_tokens=1000\n",
    "            )\n",
    "            results[model_name] = response.content[0].text\n",
    "            print(f\"✓ Got response from {model_name}\")\n",
    "        except Exception as e:\n",
    "            print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
    "            # Continue with other models\n",
    "    \n",
    "    # Google\n",
    "    if check_api_key('GOOGLE_API_KEY'):\n",
    "        try:\n",
    "            model_name = \"gemini-2.0-flash\"\n",
    "            google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "            gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
    "            response = gemini.chat.completions.create(model=model_name, messages=api_response)\n",
    "            results[model_name] = response.choices[0].message.content\n",
    "            print(f\"✓ Got response from {model_name}\")\n",
    "        except Exception as e:\n",
    "            print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
    "            # Continue with other models\n",
    "    \n",
    "    # DeepSeek\n",
    "    if check_api_key('DEEPSEEK_API_KEY'):\n",
    "        try:\n",
    "            model_name = \"deepseek-chat\"\n",
    "            deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
    "            deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
    "            response = deepseek.chat.completions.create(model=model_name, messages=api_response)\n",
    "            results[model_name] = response.choices[0].message.content\n",
    "            print(f\"✓ Got response from {model_name}\")\n",
    "        except Exception as e:\n",
    "            print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
    "            # Continue with other models\n",
    "    \n",
    "    # Groq\n",
    "    if check_api_key('GROQ_API_KEY'):\n",
    "        try:\n",
    "            model_name = \"llama-3.3-70b-versatile\"\n",
    "            groq_api_key = os.getenv('GROQ_API_KEY')\n",
    "            groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
    "            response = groq.chat.completions.create(model=model_name, messages=api_response)\n",
    "            results[model_name] = response.choices[0].message.content\n",
    "            print(f\"✓ Got response from {model_name}\")\n",
    "        except Exception as e:\n",
    "            print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
    "            # Continue with other models\n",
    "    \n",
    "    # Check if we got any responses\n",
    "    if not results:\n",
    "        print(\"⚠️ No models were able to provide a response\")\n",
    "    \n",
    "    return results\n",
    "\n",
    "# Get responses from all available models\n",
    "model_responses = run_prompt_on_available_models(prompt)\n",
    "\n",
    "# Display the results\n",
    "for model, answer in model_responses.items():\n",
    "    display(Markdown(f\"## Response from {model}\\n\\n{answer}\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Sythesize answers from all models into one</b>\n",
    "</br>\n",
    "<b>- - - - - - - - - - - - - - - -</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a synthesis prompt\n",
    "synthesis_prompt = f\"\"\"\n",
    "Here are the responses from different models:\n",
    "\"\"\"\n",
    "\n",
    "# Add each model's response to the synthesis prompt without mentioning model names\n",
    "for index, (model, response) in enumerate(model_responses.items()):\n",
    "    synthesis_prompt += f\"\\n--- Response {index+1} ---\\n{response}\\n\"\n",
    "\n",
    "synthesis_prompt += \"\"\"\n",
    "Please synthesize these responses into one comprehensive answer that:\n",
    "1. Captures the best insights from each response\n",
    "2. Resolves any contradictions between responses\n",
    "3. Presents a clear and coherent final answer\n",
    "4. Maintains the same format as the original responses (numbered list format)\n",
    "5.Compiles all additional places mentioned by all models \n",
    "\n",
    "Your synthesized response:\n",
    "\"\"\"\n",
    "\n",
    "# Create the synthesis\n",
    "if check_api_key('OPENAI_API_KEY'):\n",
    "    try:\n",
    "        openai_client = OpenAI()\n",
    "        synthesis_response = openai_client.chat.completions.create(\n",
    "            model=\"gpt-4o-mini\",\n",
    "            messages=[{\"role\": \"user\", \"content\": synthesis_prompt}]\n",
    "        )\n",
    "        synthesized_answer = synthesis_response.choices[0].message.content\n",
    "        print(\"✓ Successfully synthesized responses with gpt-4o-mini\")\n",
    "        \n",
    "        # Display the synthesized answer\n",
    "        display(Markdown(\"## Synthesized Answer\\n\\n\" + synthesized_answer))\n",
    "    except Exception as e:\n",
    "        print(f\"⚠️ Error synthesizing responses with gpt-4o-mini: {str(e)}\")\n",
    "else:\n",
    "    print(\"⚠️ OpenAI API key not available, cannot synthesize responses\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}