|
from dotenv import load_dotenv |
|
from openai import OpenAI |
|
import json |
|
import os |
|
import requests |
|
from pypdf import PdfReader |
|
import gradio as gr |
|
import base64 |
|
import time |
|
from collections import defaultdict |
|
import fastapi |
|
from gradio.context import Context |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
|
|
load_dotenv(override=True) |
|
|
|
class RateLimiter: |
|
def __init__(self, max_requests=5, time_window=5): |
|
|
|
self.max_requests = max_requests |
|
self.time_window = time_window |
|
self.request_history = defaultdict(list) |
|
|
|
def is_rate_limited(self, user_id): |
|
current_time = time.time() |
|
|
|
self.request_history[user_id] = [ |
|
timestamp for timestamp in self.request_history[user_id] |
|
if current_time - timestamp < self.time_window |
|
] |
|
|
|
|
|
if len(self.request_history[user_id]) >= self.max_requests: |
|
return True |
|
|
|
|
|
self.request_history[user_id].append(current_time) |
|
return False |
|
|
|
def push(text): |
|
requests.post( |
|
"https://api.pushover.net/1/messages.json", |
|
data={ |
|
"token": os.getenv("PUSHOVER_TOKEN"), |
|
"user": os.getenv("PUSHOVER_USER"), |
|
"message": text, |
|
} |
|
) |
|
|
|
def send_email(from_email, name, notes): |
|
auth = base64.b64encode(f'api:{os.getenv("MAILGUN_API_KEY")}'.encode()).decode() |
|
|
|
response = requests.post( |
|
f'https://api.mailgun.net/v3/{os.getenv("MAILGUN_DOMAIN")}/messages', |
|
headers={ |
|
'Authorization': f'Basic {auth}' |
|
}, |
|
data={ |
|
'from': f'Website Contact <mailgun@{os.getenv("MAILGUN_DOMAIN")}>', |
|
'to': os.getenv("MAILGUN_RECIPIENT"), |
|
'subject': f'New message from {from_email}', |
|
'text': f'Name: {name}\nEmail: {from_email}\nNotes: {notes}', |
|
'h:Reply-To': from_email |
|
} |
|
) |
|
|
|
return response.status_code == 200 |
|
|
|
|
|
def record_user_details(email, name="Name not provided", notes="not provided"): |
|
push(f"Recording {name} with email {email} and notes {notes}") |
|
|
|
email_sent = send_email(email, name, notes) |
|
return {"recorded": "ok", "email_sent": email_sent} |
|
|
|
def record_unknown_question(question): |
|
push(f"Recording {question}") |
|
return {"recorded": "ok"} |
|
|
|
record_user_details_json = { |
|
"name": "record_user_details", |
|
"description": "Use this tool to record that a user is interested in being in touch and provided an email address", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"email": { |
|
"type": "string", |
|
"description": "The email address of this user" |
|
}, |
|
"name": { |
|
"type": "string", |
|
"description": "The user's name, if they provided it" |
|
} |
|
, |
|
"notes": { |
|
"type": "string", |
|
"description": "Any additional information about the conversation that's worth recording to give context" |
|
} |
|
}, |
|
"required": ["email"], |
|
"additionalProperties": False |
|
} |
|
} |
|
|
|
record_unknown_question_json = { |
|
"name": "record_unknown_question", |
|
"description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"question": { |
|
"type": "string", |
|
"description": "The question that couldn't be answered" |
|
}, |
|
}, |
|
"required": ["question"], |
|
"additionalProperties": False |
|
} |
|
} |
|
|
|
tools = [{"type": "function", "function": record_user_details_json}, |
|
{"type": "function", "function": record_unknown_question_json}] |
|
|
|
|
|
class Me: |
|
|
|
def __init__(self): |
|
self.openai = OpenAI(api_key=os.getenv("GOOGLE_API_KEY"), base_url="https://generativelanguage.googleapis.com/v1beta/openai/") |
|
self.name = "Sagarnil Das" |
|
self.rate_limiter = RateLimiter(max_requests=5, time_window=60) |
|
reader = PdfReader("me/linkedin.pdf") |
|
self.linkedin = "" |
|
for page in reader.pages: |
|
text = page.extract_text() |
|
if text: |
|
self.linkedin += text |
|
with open("me/summary.txt", "r", encoding="utf-8") as f: |
|
self.summary = f.read() |
|
|
|
|
|
def handle_tool_call(self, tool_calls): |
|
results = [] |
|
for tool_call in tool_calls: |
|
tool_name = tool_call.function.name |
|
arguments = json.loads(tool_call.function.arguments) |
|
print(f"Tool called: {tool_name}", flush=True) |
|
tool = globals().get(tool_name) |
|
result = tool(**arguments) if tool else {} |
|
results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id}) |
|
return results |
|
|
|
def system_prompt(self): |
|
system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \ |
|
particularly questions related to {self.name}'s career, background, skills and experience. \ |
|
Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \ |
|
You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \ |
|
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \ |
|
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \ |
|
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \ |
|
When a user provides their email, both a push notification and an email notification will be sent. If the user does not provide any note in the message \ |
|
in which they provide their email, then give a summary of the conversation so far as the notes." |
|
|
|
system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n" |
|
system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}." |
|
return system_prompt |
|
|
|
def chat(self, message, history): |
|
|
|
try: |
|
|
|
request = Context.get_context().request |
|
|
|
forwarded_for = request.headers.get("X-Forwarded-For") |
|
|
|
cloudflare_ip = request.headers.get("Cf-Connecting-IP") |
|
|
|
if forwarded_for: |
|
|
|
user_id = forwarded_for.split(",")[0].strip() |
|
elif cloudflare_ip: |
|
user_id = cloudflare_ip |
|
else: |
|
|
|
user_id = request.client.host |
|
except (AttributeError, RuntimeError, fastapi.exceptions.FastAPIError): |
|
|
|
user_id = "default_user" |
|
logger.debug(f"User ID: {user_id}") |
|
if self.rate_limiter.is_rate_limited(user_id): |
|
return "You're sending messages too quickly. Please wait a moment before sending another message." |
|
|
|
messages = [{"role": "system", "content": self.system_prompt()}] |
|
|
|
|
|
if isinstance(history, list) and all(isinstance(h, dict) for h in history): |
|
messages.extend(history) |
|
else: |
|
|
|
for user_msg, assistant_msg in history: |
|
messages.append({"role": "user", "content": user_msg}) |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
done = False |
|
while not done: |
|
response = self.openai.chat.completions.create( |
|
model="gemini-2.0-flash", |
|
messages=messages, |
|
tools=tools |
|
) |
|
if response.choices[0].finish_reason == "tool_calls": |
|
tool_calls = response.choices[0].message.tool_calls |
|
tool_result = self.handle_tool_call(tool_calls) |
|
messages.append(response.choices[0].message) |
|
messages.extend(tool_result) |
|
else: |
|
done = True |
|
|
|
return response.choices[0].message.content |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
me = Me() |
|
gr.ChatInterface(me.chat, type="messages").launch() |
|
|