Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import os
|
|
5 |
import requests
|
6 |
from pypdf import PdfReader
|
7 |
import gradio as gr
|
8 |
-
|
9 |
import numpy as np
|
10 |
|
11 |
load_dotenv(override=True)
|
@@ -105,31 +105,21 @@ class Me:
|
|
105 |
self.openai = OpenAI()
|
106 |
self.name = "Alexandre Saadoun"
|
107 |
|
108 |
-
# Initialize
|
109 |
-
self.
|
110 |
-
os.getenv("NEO4J_URI", "bolt://localhost:7687"),
|
111 |
-
auth=(os.getenv("NEO4J_USER", "neo4j"), os.getenv("NEO4J_PASSWORD", "password"))
|
112 |
-
)
|
113 |
|
114 |
# Initialize RAG system - this will auto-load all files in me/
|
115 |
-
self.
|
116 |
self._populate_initial_data()
|
117 |
|
118 |
-
def
|
119 |
-
"""Setup
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
OPTIONS {indexConfig: {
|
127 |
-
`vector.dimensions`: 1536,
|
128 |
-
`vector.similarity_function`: 'cosine'
|
129 |
-
}}
|
130 |
-
""")
|
131 |
-
except Exception as e:
|
132 |
-
print(f"Index might already exist: {e}")
|
133 |
|
134 |
def _get_embedding(self, text):
|
135 |
"""Get embedding for text using OpenAI"""
|
@@ -140,15 +130,13 @@ class Me:
|
|
140 |
return response.data[0].embedding
|
141 |
|
142 |
def _populate_initial_data(self):
|
143 |
-
"""Store initial knowledge in
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
print("Auto-loading all files from me/ directory...")
|
151 |
-
self._auto_load_me_directory()
|
152 |
|
153 |
def _auto_load_me_directory(self):
|
154 |
"""Automatically load and process all files in the me/ directory"""
|
@@ -203,16 +191,17 @@ class Me:
|
|
203 |
print("Reloading me/ directory...")
|
204 |
|
205 |
# Clear existing me/ content
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
216 |
|
217 |
# Reload everything
|
218 |
self._auto_load_me_directory()
|
@@ -220,33 +209,42 @@ class Me:
|
|
220 |
|
221 |
def _search_knowledge(self, query, limit=3):
|
222 |
"""Search for relevant knowledge using vector similarity"""
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
return
|
234 |
-
|
|
|
|
|
235 |
|
236 |
def _store_new_knowledge(self, information, context=""):
|
237 |
-
"""Store new information in
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
250 |
|
251 |
def bulk_load_text_content(self, text_content, source_name="raw_text", chunk_size=800):
|
252 |
"""
|
@@ -269,24 +267,28 @@ class Me:
|
|
269 |
print(f"Created {len(chunks)} chunks")
|
270 |
|
271 |
# Store each chunk
|
272 |
-
|
|
|
|
|
|
|
|
|
273 |
for i, chunk in enumerate(chunks):
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
|
291 |
print(f"Loaded {len(chunks)} chunks from {source_name}")
|
292 |
|
@@ -334,38 +336,53 @@ class Me:
|
|
334 |
Clear all or specific type of knowledge from the database
|
335 |
|
336 |
Args:
|
337 |
-
knowledge_type: If specified, only delete
|
338 |
"""
|
339 |
-
|
340 |
if knowledge_type:
|
341 |
-
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
else:
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
349 |
def get_knowledge_stats(self):
|
350 |
"""Get statistics about the knowledge base"""
|
351 |
-
|
352 |
-
|
353 |
-
MATCH (n:Knowledge)
|
354 |
-
RETURN n.type as type, count(n) as count
|
355 |
-
ORDER BY count DESC
|
356 |
-
""")
|
357 |
|
358 |
stats = {}
|
359 |
-
total =
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
363 |
|
364 |
print(f"Knowledge Base Stats (Total: {total} documents):")
|
365 |
-
for doc_type, count in stats.items():
|
366 |
print(f" {doc_type}: {count}")
|
367 |
|
368 |
return stats
|
|
|
|
|
|
|
|
|
369 |
|
370 |
def handle_tool_call(self, tool_calls):
|
371 |
results = []
|
@@ -420,9 +437,9 @@ If you learn new relevant information during conversations, use the store_conver
|
|
420 |
return response.choices[0].message.content
|
421 |
|
422 |
def __del__(self):
|
423 |
-
"""
|
424 |
-
|
425 |
-
|
426 |
|
427 |
|
428 |
if __name__ == "__main__":
|
|
|
5 |
import requests
|
6 |
from pypdf import PdfReader
|
7 |
import gradio as gr
|
8 |
+
import chromadb
|
9 |
import numpy as np
|
10 |
|
11 |
load_dotenv(override=True)
|
|
|
105 |
self.openai = OpenAI()
|
106 |
self.name = "Alexandre Saadoun"
|
107 |
|
108 |
+
# Initialize Chroma connection
|
109 |
+
self.chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
|
|
|
|
|
|
110 |
|
111 |
# Initialize RAG system - this will auto-load all files in me/
|
112 |
+
self._setup_chroma_collection()
|
113 |
self._populate_initial_data()
|
114 |
|
115 |
+
def _setup_chroma_collection(self):
|
116 |
+
"""Setup Chroma collection for RAG"""
|
117 |
+
try:
|
118 |
+
self.collection = self.chroma_client.get_collection(name="knowledge_base")
|
119 |
+
print("✅ Loaded existing knowledge base")
|
120 |
+
except:
|
121 |
+
self.collection = self.chroma_client.create_collection(name="knowledge_base")
|
122 |
+
print("✅ Created new knowledge base")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
def _get_embedding(self, text):
|
125 |
"""Get embedding for text using OpenAI"""
|
|
|
130 |
return response.data[0].embedding
|
131 |
|
132 |
def _populate_initial_data(self):
|
133 |
+
"""Store initial knowledge in Chroma"""
|
134 |
+
# Check if data already exists
|
135 |
+
count = self.collection.count()
|
136 |
+
|
137 |
+
if count == 0: # Only populate if empty
|
138 |
+
print("Auto-loading all files from me/ directory...")
|
139 |
+
self._auto_load_me_directory()
|
|
|
|
|
140 |
|
141 |
def _auto_load_me_directory(self):
|
142 |
"""Automatically load and process all files in the me/ directory"""
|
|
|
191 |
print("Reloading me/ directory...")
|
192 |
|
193 |
# Clear existing me/ content
|
194 |
+
try:
|
195 |
+
# Get all documents from me/ files
|
196 |
+
results = self.collection.get(include=["metadatas"])
|
197 |
+
me_ids = [results["ids"][i] for i, metadata in enumerate(results["metadatas"])
|
198 |
+
if metadata.get("source", "").startswith("me_")]
|
199 |
+
|
200 |
+
if me_ids:
|
201 |
+
self.collection.delete(ids=me_ids)
|
202 |
+
print(f"Cleared {len(me_ids)} existing files from me/")
|
203 |
+
except Exception as e:
|
204 |
+
print(f"Error clearing existing data: {e}")
|
205 |
|
206 |
# Reload everything
|
207 |
self._auto_load_me_directory()
|
|
|
209 |
|
210 |
def _search_knowledge(self, query, limit=3):
|
211 |
"""Search for relevant knowledge using vector similarity"""
|
212 |
+
try:
|
213 |
+
results = self.collection.query(
|
214 |
+
query_texts=[query],
|
215 |
+
n_results=limit,
|
216 |
+
include=["documents", "metadatas", "distances"]
|
217 |
+
)
|
218 |
+
|
219 |
+
search_results = []
|
220 |
+
if results["documents"] and results["documents"][0]:
|
221 |
+
for i, doc in enumerate(results["documents"][0]):
|
222 |
+
search_results.append({
|
223 |
+
"content": doc,
|
224 |
+
"type": results["metadatas"][0][i].get("type", "unknown") if results["metadatas"] else "unknown",
|
225 |
+
"score": 1 - results["distances"][0][i] if results["distances"] else 1.0
|
226 |
+
})
|
227 |
|
228 |
+
return search_results
|
229 |
+
except Exception as e:
|
230 |
+
print(f"Search error: {e}")
|
231 |
+
return []
|
232 |
|
233 |
def _store_new_knowledge(self, information, context=""):
|
234 |
+
"""Store new information in Chroma"""
|
235 |
+
try:
|
236 |
+
doc_id = f"conv_{len(self.collection.get()['ids'])}"
|
237 |
+
self.collection.add(
|
238 |
+
documents=[information],
|
239 |
+
metadatas=[{
|
240 |
+
"type": "conversation",
|
241 |
+
"context": context,
|
242 |
+
"timestamp": str(np.datetime64('now'))
|
243 |
+
}],
|
244 |
+
ids=[doc_id]
|
245 |
+
)
|
246 |
+
except Exception as e:
|
247 |
+
print(f"Error storing knowledge: {e}")
|
248 |
|
249 |
def bulk_load_text_content(self, text_content, source_name="raw_text", chunk_size=800):
|
250 |
"""
|
|
|
267 |
print(f"Created {len(chunks)} chunks")
|
268 |
|
269 |
# Store each chunk
|
270 |
+
try:
|
271 |
+
documents = []
|
272 |
+
metadatas = []
|
273 |
+
ids = []
|
274 |
+
|
275 |
for i, chunk in enumerate(chunks):
|
276 |
+
documents.append(chunk)
|
277 |
+
metadatas.append({
|
278 |
+
"type": "text_content",
|
279 |
+
"source": source_name,
|
280 |
+
"chunk_index": i,
|
281 |
+
"timestamp": str(np.datetime64('now'))
|
282 |
+
})
|
283 |
+
ids.append(f"{source_name}_chunk_{i}")
|
284 |
+
|
285 |
+
self.collection.add(
|
286 |
+
documents=documents,
|
287 |
+
metadatas=metadatas,
|
288 |
+
ids=ids
|
289 |
+
)
|
290 |
+
except Exception as e:
|
291 |
+
print(f"Error storing chunks: {e}")
|
292 |
|
293 |
print(f"Loaded {len(chunks)} chunks from {source_name}")
|
294 |
|
|
|
336 |
Clear all or specific type of knowledge from the database
|
337 |
|
338 |
Args:
|
339 |
+
knowledge_type: If specified, only delete documents of this type
|
340 |
"""
|
341 |
+
try:
|
342 |
if knowledge_type:
|
343 |
+
# Get documents of specific type
|
344 |
+
results = self.collection.get(include=["metadatas"])
|
345 |
+
type_ids = [results["ids"][i] for i, metadata in enumerate(results["metadatas"])
|
346 |
+
if metadata.get("type") == knowledge_type]
|
347 |
+
|
348 |
+
if type_ids:
|
349 |
+
self.collection.delete(ids=type_ids)
|
350 |
+
print(f"Deleted {len(type_ids)} {knowledge_type} documents")
|
351 |
+
else:
|
352 |
+
print(f"No {knowledge_type} documents found")
|
353 |
else:
|
354 |
+
# Clear entire collection
|
355 |
+
all_ids = self.collection.get()["ids"]
|
356 |
+
if all_ids:
|
357 |
+
self.collection.delete(ids=all_ids)
|
358 |
+
print(f"Deleted {len(all_ids)} documents")
|
359 |
+
else:
|
360 |
+
print("No documents to delete")
|
361 |
+
|
362 |
+
except Exception as e:
|
363 |
+
print(f"Error clearing knowledge base: {e}")
|
364 |
|
365 |
def get_knowledge_stats(self):
|
366 |
"""Get statistics about the knowledge base"""
|
367 |
+
try:
|
368 |
+
results = self.collection.get(include=["metadatas"])
|
|
|
|
|
|
|
|
|
369 |
|
370 |
stats = {}
|
371 |
+
total = len(results["ids"])
|
372 |
+
|
373 |
+
for metadata in results["metadatas"]:
|
374 |
+
doc_type = metadata.get("type", "unknown")
|
375 |
+
stats[doc_type] = stats.get(doc_type, 0) + 1
|
376 |
|
377 |
print(f"Knowledge Base Stats (Total: {total} documents):")
|
378 |
+
for doc_type, count in sorted(stats.items(), key=lambda x: x[1], reverse=True):
|
379 |
print(f" {doc_type}: {count}")
|
380 |
|
381 |
return stats
|
382 |
+
|
383 |
+
except Exception as e:
|
384 |
+
print(f"Error getting stats: {e}")
|
385 |
+
return {}
|
386 |
|
387 |
def handle_tool_call(self, tool_calls):
|
388 |
results = []
|
|
|
437 |
return response.choices[0].message.content
|
438 |
|
439 |
def __del__(self):
|
440 |
+
"""Clean up Chroma connection"""
|
441 |
+
# Chroma client doesn't need explicit closing
|
442 |
+
pass
|
443 |
|
444 |
|
445 |
if __name__ == "__main__":
|