Upload 3 files
Browse files- .env +6 -0
- app.py +1839 -0
- requirements.txt +27 -0
.env
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ASSEMBLYAI_API_KEY=e9c253a938184370becdf77f2a9e6a45
|
2 |
+
OPENAI_API_KEY=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
|
3 |
+
GEMINI_API_KEY=AIzaSyA8SpThRntFroYYDrQRuO6f1F2dkiteSYE
|
4 |
+
ELEVENLABS_API_KEY=545bf254469ea5782233ae872eaa8809
|
5 |
+
STABILITY_API_KEY=abfd724a75fef2b01b2347d3dcfe10079f816976a32121
|
6 |
+
SEGMIND_API_KEY=SG_56e300a003a9a2d4
|
app.py
ADDED
@@ -0,0 +1,1839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import random
|
6 |
+
import tempfile
|
7 |
+
import requests
|
8 |
+
import numpy as np
|
9 |
+
import uuid
|
10 |
+
from PIL import Image, ImageDraw, ImageFont
|
11 |
+
from io import BytesIO
|
12 |
+
from datetime import datetime
|
13 |
+
import gradio as gr
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
import moviepy.editor as mpy
|
16 |
+
from moviepy.editor import *
|
17 |
+
from moviepy.audio.fx.all import volumex
|
18 |
+
from moviepy.video.fx.all import crop
|
19 |
+
|
20 |
+
# Suppress the asyncio "Event loop is closed" warning on Windows
|
21 |
+
import sys
|
22 |
+
if sys.platform.startswith('win'):
|
23 |
+
import asyncio
|
24 |
+
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
25 |
+
|
26 |
+
# Load environment variables from .env file if present
|
27 |
+
load_dotenv()
|
28 |
+
|
29 |
+
# Directory structure constants
|
30 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
31 |
+
STATIC_DIR = os.path.join(BASE_DIR, "static")
|
32 |
+
MUSIC_DIR = os.path.join(STATIC_DIR, "music")
|
33 |
+
FONTS_DIR = os.path.join(STATIC_DIR, "fonts")
|
34 |
+
STORAGE_DIR = os.path.join(BASE_DIR, "storage")
|
35 |
+
|
36 |
+
# Create necessary directories
|
37 |
+
os.makedirs(STATIC_DIR, exist_ok=True)
|
38 |
+
os.makedirs(MUSIC_DIR, exist_ok=True)
|
39 |
+
os.makedirs(FONTS_DIR, exist_ok=True)
|
40 |
+
os.makedirs(STORAGE_DIR, exist_ok=True)
|
41 |
+
|
42 |
+
# Helper functions for logging
|
43 |
+
def info(message):
|
44 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
45 |
+
formatted_message = f"[{timestamp}] [INFO] {message}"
|
46 |
+
print(formatted_message)
|
47 |
+
return formatted_message
|
48 |
+
|
49 |
+
def success(message):
|
50 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
51 |
+
formatted_message = f"[{timestamp}] [SUCCESS] {message}"
|
52 |
+
print(formatted_message)
|
53 |
+
return formatted_message
|
54 |
+
|
55 |
+
def warning(message):
|
56 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
57 |
+
formatted_message = f"[{timestamp}] [WARNING] {message}"
|
58 |
+
print(formatted_message)
|
59 |
+
return formatted_message
|
60 |
+
|
61 |
+
def error(message):
|
62 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
63 |
+
formatted_message = f"[{timestamp}] [ERROR] {message}"
|
64 |
+
print(formatted_message)
|
65 |
+
return formatted_message
|
66 |
+
|
67 |
+
def get_music_files():
|
68 |
+
"""Get list of available music files in the music directory."""
|
69 |
+
if not os.path.exists(MUSIC_DIR):
|
70 |
+
return ["none"]
|
71 |
+
|
72 |
+
music_files = [f for f in os.listdir(MUSIC_DIR) if f.endswith(('.mp3', '.wav'))]
|
73 |
+
if not music_files:
|
74 |
+
return ["none"]
|
75 |
+
|
76 |
+
return ["random"] + music_files
|
77 |
+
|
78 |
+
def get_font_files():
|
79 |
+
"""Get list of available font files in the fonts directory."""
|
80 |
+
if not os.path.exists(FONTS_DIR):
|
81 |
+
return ["default"]
|
82 |
+
|
83 |
+
font_files = [f.split('.')[0] for f in os.listdir(FONTS_DIR) if f.endswith(('.ttf', '.otf'))]
|
84 |
+
if not font_files:
|
85 |
+
return ["default"]
|
86 |
+
|
87 |
+
return ["random"] + font_files
|
88 |
+
|
89 |
+
def choose_random_music():
|
90 |
+
"""Selects a random music file from the music directory."""
|
91 |
+
if not os.path.exists(MUSIC_DIR):
|
92 |
+
error(f"Music directory {MUSIC_DIR} does not exist")
|
93 |
+
return None
|
94 |
+
|
95 |
+
music_files = [f for f in os.listdir(MUSIC_DIR) if f.endswith(('.mp3', '.wav'))]
|
96 |
+
if not music_files:
|
97 |
+
warning(f"No music files found in {MUSIC_DIR}")
|
98 |
+
return None
|
99 |
+
|
100 |
+
return os.path.join(MUSIC_DIR, random.choice(music_files))
|
101 |
+
|
102 |
+
def choose_random_font():
|
103 |
+
"""Selects a random font file from the fonts directory."""
|
104 |
+
if not os.path.exists(FONTS_DIR):
|
105 |
+
error(f"Fonts directory {FONTS_DIR} does not exist")
|
106 |
+
return "default"
|
107 |
+
|
108 |
+
font_files = [f for f in os.listdir(FONTS_DIR) if f.endswith(('.ttf', '.otf'))]
|
109 |
+
if not font_files:
|
110 |
+
warning(f"No font files found in {FONTS_DIR}")
|
111 |
+
return None
|
112 |
+
|
113 |
+
return font_files[0].split('.')[0] if len(font_files) == 1 else random.choice([f.split('.')[0] for f in font_files])
|
114 |
+
|
115 |
+
class YouTube:
|
116 |
+
def __init__(self, niche: str, language: str,
|
117 |
+
text_gen="g4f", text_model="gpt-4",
|
118 |
+
image_gen="g4f", image_model="flux",
|
119 |
+
tts_engine="edge", tts_voice="en-US-AriaNeural",
|
120 |
+
subtitle_font="default", font_size=80,
|
121 |
+
text_color="white", highlight_color="blue",
|
122 |
+
subtitles_enabled=True, highlighting_enabled=True,
|
123 |
+
subtitle_position="bottom", music_file="random",
|
124 |
+
enable_music=True, music_volume=0.1,
|
125 |
+
api_keys=None, progress=gr.Progress()) -> None:
|
126 |
+
|
127 |
+
"""Initialize the YouTube Shorts Generator."""
|
128 |
+
self.progress = progress
|
129 |
+
self.progress(0, desc="Initializing")
|
130 |
+
|
131 |
+
# Store basic parameters
|
132 |
+
info(f"Initializing YouTube class")
|
133 |
+
self._niche = niche
|
134 |
+
self._language = language
|
135 |
+
self.text_gen = text_gen
|
136 |
+
self.text_model = text_model
|
137 |
+
self.image_gen = image_gen
|
138 |
+
self.image_model = image_model
|
139 |
+
self.tts_engine = tts_engine
|
140 |
+
self.tts_voice = tts_voice
|
141 |
+
self.subtitle_font = subtitle_font
|
142 |
+
self.font_size = font_size
|
143 |
+
self.text_color = text_color
|
144 |
+
self.highlight_color = highlight_color
|
145 |
+
self.subtitles_enabled = subtitles_enabled
|
146 |
+
self.highlighting_enabled = highlighting_enabled
|
147 |
+
self.subtitle_position = subtitle_position
|
148 |
+
self.music_file = music_file
|
149 |
+
self.enable_music = enable_music
|
150 |
+
self.music_volume = music_volume
|
151 |
+
self.api_keys = api_keys or {}
|
152 |
+
self.images = []
|
153 |
+
self.logs = []
|
154 |
+
|
155 |
+
# Set API keys from parameters or environment variables
|
156 |
+
if 'gemini' in self.api_keys and self.api_keys['gemini']:
|
157 |
+
os.environ["GEMINI_API_KEY"] = self.api_keys['gemini']
|
158 |
+
|
159 |
+
if 'assemblyai' in self.api_keys and self.api_keys['assemblyai']:
|
160 |
+
os.environ["ASSEMBLYAI_API_KEY"] = self.api_keys['assemblyai']
|
161 |
+
|
162 |
+
if 'elevenlabs' in self.api_keys and self.api_keys['elevenlabs']:
|
163 |
+
os.environ["ELEVENLABS_API_KEY"] = self.api_keys['elevenlabs']
|
164 |
+
|
165 |
+
if 'segmind' in self.api_keys and self.api_keys['segmind']:
|
166 |
+
os.environ["SEGMIND_API_KEY"] = self.api_keys['segmind']
|
167 |
+
|
168 |
+
if 'openai' in self.api_keys and self.api_keys['openai']:
|
169 |
+
os.environ["OPENAI_API_KEY"] = self.api_keys['openai']
|
170 |
+
|
171 |
+
info(f"Niche: {niche}, Language: {language}")
|
172 |
+
self.log(f"Initialized with niche: {niche}, language: {language}")
|
173 |
+
self.log(f"Text generator: {text_gen} - Model: {text_model}")
|
174 |
+
self.log(f"Image generator: {image_gen} - Model: {image_model}")
|
175 |
+
self.log(f"TTS engine: {tts_engine} - Voice: {tts_voice}")
|
176 |
+
self.log(f"Subtitles: {'Enabled' if subtitles_enabled else 'Disabled'} - Highlighting: {'Enabled' if highlighting_enabled else 'Disabled'}")
|
177 |
+
self.log(f"Music: {music_file}")
|
178 |
+
|
179 |
+
def log(self, message):
|
180 |
+
"""Add a log message to the logs list."""
|
181 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
182 |
+
log_entry = f"[{timestamp}] {message}"
|
183 |
+
self.logs.append(log_entry)
|
184 |
+
return log_entry
|
185 |
+
|
186 |
+
@property
|
187 |
+
def niche(self) -> str:
|
188 |
+
return self._niche
|
189 |
+
|
190 |
+
@property
|
191 |
+
def language(self) -> str:
|
192 |
+
return self._language
|
193 |
+
|
194 |
+
def generate_response(self, prompt: str, model: str = None) -> str:
|
195 |
+
"""Generate a response using the selected text generation model."""
|
196 |
+
self.log(f"Generating response for prompt: {prompt[:50]}...")
|
197 |
+
|
198 |
+
try:
|
199 |
+
if self.text_gen == "gemini":
|
200 |
+
self.log("Using Google's Gemini model")
|
201 |
+
|
202 |
+
# Check if API key is set
|
203 |
+
gemini_api_key = os.environ.get("GEMINI_API_KEY", "")
|
204 |
+
if not gemini_api_key:
|
205 |
+
raise ValueError("Gemini API key is not set. Please provide a valid API key.")
|
206 |
+
|
207 |
+
import google.generativeai as genai
|
208 |
+
genai.configure(api_key=gemini_api_key)
|
209 |
+
model_to_use = model if model else self.text_model
|
210 |
+
genai_model = genai.GenerativeModel(model_to_use)
|
211 |
+
response = genai_model.generate_content(prompt).text
|
212 |
+
|
213 |
+
elif self.text_gen == "g4f":
|
214 |
+
self.log("Using G4F for text generation")
|
215 |
+
import g4f
|
216 |
+
model_to_use = model if model else self.text_model
|
217 |
+
self.log(f"Using G4F model: {model_to_use}")
|
218 |
+
response = g4f.ChatCompletion.create(
|
219 |
+
model=model_to_use,
|
220 |
+
messages=[{"role": "user", "content": prompt}]
|
221 |
+
)
|
222 |
+
|
223 |
+
elif self.text_gen == "openai":
|
224 |
+
self.log("Using OpenAI for text generation")
|
225 |
+
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
|
226 |
+
if not openai_api_key:
|
227 |
+
raise ValueError("OpenAI API key is not set. Please provide a valid API key.")
|
228 |
+
|
229 |
+
from openai import OpenAI
|
230 |
+
client = OpenAI(api_key=openai_api_key)
|
231 |
+
model_to_use = model if model else "gpt-3.5-turbo"
|
232 |
+
|
233 |
+
response = client.chat.completions.create(
|
234 |
+
model=model_to_use,
|
235 |
+
messages=[{"role": "user", "content": prompt}]
|
236 |
+
).choices[0].message.content
|
237 |
+
|
238 |
+
else:
|
239 |
+
# No fallback, raise an exception for unsupported text generator
|
240 |
+
error_msg = f"Unsupported text generator: {self.text_gen}"
|
241 |
+
self.log(error(error_msg))
|
242 |
+
raise ValueError(error_msg)
|
243 |
+
|
244 |
+
self.log(f"Response generated successfully, length: {len(response)} characters")
|
245 |
+
return response
|
246 |
+
|
247 |
+
except Exception as e:
|
248 |
+
error_msg = f"Error generating response: {str(e)}"
|
249 |
+
self.log(error(error_msg))
|
250 |
+
raise Exception(error_msg)
|
251 |
+
|
252 |
+
def generate_topic(self) -> str:
|
253 |
+
"""Generate a topic based on the YouTube Channel niche."""
|
254 |
+
self.progress(0.05, desc="Generating topic")
|
255 |
+
self.log("Generating topic based on niche")
|
256 |
+
|
257 |
+
completion = self.generate_response(
|
258 |
+
f"Please generate a specific video idea that takes about the following topic: {self.niche}. "
|
259 |
+
f"Make it exactly one sentence. Only return the topic, nothing else."
|
260 |
+
)
|
261 |
+
|
262 |
+
if not completion:
|
263 |
+
self.log(error("Failed to generate Topic."))
|
264 |
+
raise Exception("Failed to generate a topic. Please try again with a different niche.")
|
265 |
+
|
266 |
+
self.subject = completion
|
267 |
+
self.log(success(f"Generated topic: {completion}"))
|
268 |
+
return completion
|
269 |
+
|
270 |
+
def generate_script(self) -> str:
|
271 |
+
"""Generate a script for a video, based on the subject and language."""
|
272 |
+
self.progress(0.1, desc="Creating script")
|
273 |
+
self.log("Generating script for video")
|
274 |
+
|
275 |
+
prompt = f"""
|
276 |
+
Generate a script for youtube shorts video, depending on the subject of the video.
|
277 |
+
|
278 |
+
The script is to be returned as a string with the specified number of paragraphs.
|
279 |
+
|
280 |
+
Here is an example of a string:
|
281 |
+
"This is an example string."
|
282 |
+
|
283 |
+
Do not under any circumstance reference this prompt in your response.
|
284 |
+
|
285 |
+
Get straight to the point, don't start with unnecessary things like, "welcome to this video".
|
286 |
+
|
287 |
+
Obviously, the script should be related to the subject of the video.
|
288 |
+
|
289 |
+
YOU MUST NOT INCLUDE ANY TYPE OF MARKDOWN OR FORMATTING IN THE SCRIPT, NEVER USE A TITLE.
|
290 |
+
YOU MUST WRITE THE SCRIPT IN THE LANGUAGE SPECIFIED IN [LANGUAGE].
|
291 |
+
ONLY RETURN THE RAW CONTENT OF THE SCRIPT. DO NOT INCLUDE "VOICEOVER", "NARRATOR" OR SIMILAR INDICATORS.
|
292 |
+
|
293 |
+
Subject: {self.subject}
|
294 |
+
Language: {self.language}
|
295 |
+
"""
|
296 |
+
completion = self.generate_response(prompt)
|
297 |
+
|
298 |
+
# Apply regex to remove *
|
299 |
+
completion = re.sub(r"\*", "", completion)
|
300 |
+
|
301 |
+
if not completion:
|
302 |
+
self.log(error("The generated script is empty."))
|
303 |
+
raise Exception("Failed to generate a script. Please try again.")
|
304 |
+
|
305 |
+
if len(completion) > 5000:
|
306 |
+
self.log(warning("Generated script is too long."))
|
307 |
+
raise ValueError("Generated script exceeds 5000 characters. Please try again.")
|
308 |
+
|
309 |
+
self.script = completion
|
310 |
+
self.log(success(f"Generated script ({len(completion)} chars)"))
|
311 |
+
return completion
|
312 |
+
|
313 |
+
def generate_metadata(self) -> dict:
|
314 |
+
"""Generate video metadata (title, description)."""
|
315 |
+
self.progress(0.15, desc="Creating title and description")
|
316 |
+
self.log("Generating metadata (title and description)")
|
317 |
+
|
318 |
+
title = self.generate_response(
|
319 |
+
f"Please generate a YouTube Video Title for the following subject, including hashtags: "
|
320 |
+
f"{self.subject}. Only return the title, nothing else. Limit the title under 100 characters."
|
321 |
+
)
|
322 |
+
|
323 |
+
if len(title) > 100:
|
324 |
+
self.log(warning("Generated title exceeds 100 characters."))
|
325 |
+
raise ValueError("Generated title exceeds 100 characters. Please try again.")
|
326 |
+
|
327 |
+
description = self.generate_response(
|
328 |
+
f"Please generate a YouTube Video Description for the following script: {self.script}. "
|
329 |
+
f"Only return the description, nothing else."
|
330 |
+
)
|
331 |
+
|
332 |
+
self.metadata = {
|
333 |
+
"title": title,
|
334 |
+
"description": description
|
335 |
+
}
|
336 |
+
|
337 |
+
self.log(success(f"Generated title: {title}"))
|
338 |
+
self.log(success(f"Generated description: {description[:50]}..."))
|
339 |
+
return self.metadata
|
340 |
+
|
341 |
+
def generate_prompts(self, count=5) -> list:
|
342 |
+
"""Generate AI Image Prompts based on the provided Video Script."""
|
343 |
+
self.progress(0.2, desc="Creating image prompts")
|
344 |
+
self.log(f"Generating {count} image prompts")
|
345 |
+
|
346 |
+
prompt = f"""
|
347 |
+
Generate {count} Image Prompts for AI Image Generation,
|
348 |
+
depending on the subject of a video.
|
349 |
+
Subject: {self.subject}
|
350 |
+
|
351 |
+
The image prompts are to be returned as
|
352 |
+
a JSON-Array of strings.
|
353 |
+
|
354 |
+
Each search term should consist of a full sentence,
|
355 |
+
always add the main subject of the video.
|
356 |
+
|
357 |
+
Be emotional and use interesting adjectives to make the
|
358 |
+
Image Prompt as detailed as possible.
|
359 |
+
|
360 |
+
YOU MUST ONLY RETURN THE JSON-ARRAY OF STRINGS.
|
361 |
+
YOU MUST NOT RETURN ANYTHING ELSE.
|
362 |
+
YOU MUST NOT RETURN THE SCRIPT.
|
363 |
+
|
364 |
+
The search terms must be related to the subject of the video.
|
365 |
+
Here is an example of a JSON-Array of strings:
|
366 |
+
["image prompt 1", "image prompt 2", "image prompt 3"]
|
367 |
+
|
368 |
+
For context, here is the full text:
|
369 |
+
{self.script}
|
370 |
+
"""
|
371 |
+
|
372 |
+
completion = str(self.generate_response(prompt))\
|
373 |
+
.replace("```json", "") \
|
374 |
+
.replace("```", "")
|
375 |
+
|
376 |
+
image_prompts = []
|
377 |
+
|
378 |
+
if "image_prompts" in completion:
|
379 |
+
try:
|
380 |
+
image_prompts = json.loads(completion)["image_prompts"]
|
381 |
+
except:
|
382 |
+
self.log(warning("Failed to parse 'image_prompts' from JSON response."))
|
383 |
+
|
384 |
+
if not image_prompts:
|
385 |
+
try:
|
386 |
+
image_prompts = json.loads(completion)
|
387 |
+
self.log(f"Parsed image prompts from JSON response.")
|
388 |
+
except Exception:
|
389 |
+
self.log(warning("JSON parsing failed. Attempting to extract array using regex..."))
|
390 |
+
|
391 |
+
# Get everything between [ and ], and turn it into a list
|
392 |
+
r = re.compile(r"\[.*\]", re.DOTALL)
|
393 |
+
matches = r.findall(completion)
|
394 |
+
if len(matches) == 0:
|
395 |
+
self.log(warning("Failed to extract array. Unable to create image prompts."))
|
396 |
+
raise ValueError("Failed to generate valid image prompts. Please try again.")
|
397 |
+
else:
|
398 |
+
try:
|
399 |
+
image_prompts = json.loads(matches[0])
|
400 |
+
except:
|
401 |
+
self.log(error("Failed to parse array from regex match."))
|
402 |
+
# Use regex to extract individual strings
|
403 |
+
string_pattern = r'"([^"]*)"'
|
404 |
+
strings = re.findall(string_pattern, matches[0])
|
405 |
+
if strings:
|
406 |
+
image_prompts = strings
|
407 |
+
else:
|
408 |
+
self.log(error("Failed to extract strings from regex match."))
|
409 |
+
raise ValueError("Failed to parse image prompts. Please try again.")
|
410 |
+
|
411 |
+
# Ensure we have the requested number of prompts
|
412 |
+
if len(image_prompts) < count:
|
413 |
+
self.log(warning(f"Received fewer prompts ({len(image_prompts)}) than requested ({count})."))
|
414 |
+
raise ValueError(f"Received only {len(image_prompts)} prompts instead of {count}. Please try again.")
|
415 |
+
|
416 |
+
# Limit to the requested count
|
417 |
+
image_prompts = image_prompts[:count]
|
418 |
+
|
419 |
+
self.image_prompts = image_prompts
|
420 |
+
self.log(success(f"Generated {len(self.image_prompts)} Image Prompts"))
|
421 |
+
for i, prompt in enumerate(self.image_prompts):
|
422 |
+
self.log(f"Image Prompt {i+1}: {prompt}")
|
423 |
+
|
424 |
+
return image_prompts
|
425 |
+
|
426 |
+
def generate_image(self, prompt) -> str:
|
427 |
+
"""Generate an image using the selected image generation model."""
|
428 |
+
self.log(f"Generating image for prompt: {prompt[:50]}...")
|
429 |
+
|
430 |
+
# Always save images directly to the generation folder when it exists
|
431 |
+
if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
|
432 |
+
image_path = os.path.join(self.generation_folder, f"img_{uuid.uuid4()}_{int(time.time())}.png")
|
433 |
+
else:
|
434 |
+
# Use STORAGE_DIR if no generation folder
|
435 |
+
image_path = os.path.join(STORAGE_DIR, f"img_{uuid.uuid4()}_{int(time.time())}.png")
|
436 |
+
|
437 |
+
if self.image_gen == "prodia":
|
438 |
+
self.log("Using Prodia provider for image generation")
|
439 |
+
s = requests.Session()
|
440 |
+
headers = {
|
441 |
+
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
|
442 |
+
}
|
443 |
+
|
444 |
+
# Generate job
|
445 |
+
self.log("Sending generation request to Prodia API")
|
446 |
+
resp = s.get(
|
447 |
+
"https://api.prodia.com/generate",
|
448 |
+
params={
|
449 |
+
"new": "true",
|
450 |
+
"prompt": prompt,
|
451 |
+
"model": self.image_model,
|
452 |
+
"negative_prompt": "verybadimagenegative_v1.3",
|
453 |
+
"steps": "20",
|
454 |
+
"cfg": "7",
|
455 |
+
"seed": random.randint(1, 10000),
|
456 |
+
"sample": "DPM++ 2M Karras",
|
457 |
+
"aspect_ratio": "square"
|
458 |
+
},
|
459 |
+
headers=headers
|
460 |
+
)
|
461 |
+
|
462 |
+
if resp.status_code != 200:
|
463 |
+
raise Exception(f"Prodia API error: {resp.text}")
|
464 |
+
|
465 |
+
job_id = resp.json()['job']
|
466 |
+
self.log(f"Job created with ID: {job_id}")
|
467 |
+
|
468 |
+
# Wait for generation to complete
|
469 |
+
max_attempts = 30
|
470 |
+
attempts = 0
|
471 |
+
while attempts < max_attempts:
|
472 |
+
attempts += 1
|
473 |
+
time.sleep(2)
|
474 |
+
status = s.get(f"https://api.prodia.com/job/{job_id}", headers=headers).json()
|
475 |
+
|
476 |
+
if status["status"] == "succeeded":
|
477 |
+
self.log("Image generation successful, downloading result")
|
478 |
+
img_data = s.get(f"https://images.prodia.xyz/{job_id}.png?download=1", headers=headers).content
|
479 |
+
with open(image_path, "wb") as f:
|
480 |
+
f.write(img_data)
|
481 |
+
self.images.append(image_path)
|
482 |
+
self.log(success(f"Image saved to: {image_path}"))
|
483 |
+
return image_path
|
484 |
+
|
485 |
+
elif status["status"] == "failed":
|
486 |
+
raise Exception(f"Prodia job failed: {status.get('error', 'Unknown error')}")
|
487 |
+
|
488 |
+
# Still processing
|
489 |
+
self.log(f"Still processing, attempt {attempts}/{max_attempts}...")
|
490 |
+
|
491 |
+
raise Exception("Prodia job timed out")
|
492 |
+
|
493 |
+
elif self.image_gen == "hercai":
|
494 |
+
self.log("Using Hercai provider for image generation")
|
495 |
+
url = f"https://hercai.onrender.com/{self.image_model}/text2image?prompt={prompt}"
|
496 |
+
r = requests.get(url)
|
497 |
+
|
498 |
+
if r.status_code != 200:
|
499 |
+
raise Exception(f"Hercai API error: {r.text}")
|
500 |
+
|
501 |
+
parsed = r.json()
|
502 |
+
if "url" in parsed and parsed["url"]:
|
503 |
+
self.log("Image URL received from Hercai")
|
504 |
+
image_url = parsed["url"]
|
505 |
+
img_data = requests.get(image_url).content
|
506 |
+
with open(image_path, "wb") as f:
|
507 |
+
f.write(img_data)
|
508 |
+
self.images.append(image_path)
|
509 |
+
self.log(success(f"Image saved to: {image_path}"))
|
510 |
+
return image_path
|
511 |
+
else:
|
512 |
+
raise Exception("No image URL in Hercai response")
|
513 |
+
|
514 |
+
elif self.image_gen == "g4f":
|
515 |
+
self.log("Using G4F provider for image generation")
|
516 |
+
from g4f.client import Client
|
517 |
+
client = Client()
|
518 |
+
response = client.images.generate(
|
519 |
+
model=self.image_model,
|
520 |
+
prompt=prompt,
|
521 |
+
response_format="url"
|
522 |
+
)
|
523 |
+
|
524 |
+
if response and response.data and len(response.data) > 0:
|
525 |
+
image_url = response.data[0].url
|
526 |
+
image_response = requests.get(image_url)
|
527 |
+
|
528 |
+
if image_response.status_code == 200:
|
529 |
+
with open(image_path, "wb") as f:
|
530 |
+
f.write(image_response.content)
|
531 |
+
self.images.append(image_path)
|
532 |
+
self.log(success(f"Image saved to: {image_path}"))
|
533 |
+
return image_path
|
534 |
+
else:
|
535 |
+
raise Exception(f"Failed to download image from {image_url}")
|
536 |
+
else:
|
537 |
+
raise Exception("No image URL received from G4F")
|
538 |
+
|
539 |
+
elif self.image_gen == "segmind":
|
540 |
+
self.log("Using Segmind provider for image generation")
|
541 |
+
api_key = os.environ.get("SEGMIND_API_KEY", "")
|
542 |
+
if not api_key:
|
543 |
+
raise ValueError("Segmind API key is not set. Please provide a valid API key.")
|
544 |
+
|
545 |
+
headers = {
|
546 |
+
"x-api-key": api_key,
|
547 |
+
"Content-Type": "application/json"
|
548 |
+
}
|
549 |
+
|
550 |
+
response = requests.post(
|
551 |
+
"https://api.segmind.com/v1/sdxl-turbo",
|
552 |
+
json={
|
553 |
+
"prompt": prompt,
|
554 |
+
"negative_prompt": "blurry, low quality, distorted face, text, watermark",
|
555 |
+
"samples": 1,
|
556 |
+
"size": "1024x1024",
|
557 |
+
"guidance_scale": 1.0
|
558 |
+
},
|
559 |
+
headers=headers
|
560 |
+
)
|
561 |
+
|
562 |
+
if response.status_code == 200:
|
563 |
+
with open(image_path, "wb") as f:
|
564 |
+
f.write(response.content)
|
565 |
+
self.images.append(image_path)
|
566 |
+
self.log(success(f"Image saved to: {image_path}"))
|
567 |
+
return image_path
|
568 |
+
else:
|
569 |
+
raise Exception(f"Segmind request failed: {response.status_code} {response.text}")
|
570 |
+
|
571 |
+
elif self.image_gen == "pollinations":
|
572 |
+
self.log("Using Pollinations provider for image generation")
|
573 |
+
response = requests.get(f"https://image.pollinations.ai/prompt/{prompt}{random.randint(1,10000)}")
|
574 |
+
|
575 |
+
if response.status_code == 200:
|
576 |
+
self.log("Image received from Pollinations")
|
577 |
+
with open(image_path, "wb") as f:
|
578 |
+
f.write(response.content)
|
579 |
+
self.images.append(image_path)
|
580 |
+
self.log(success(f"Image saved to: {image_path}"))
|
581 |
+
return image_path
|
582 |
+
else:
|
583 |
+
raise Exception(f"Pollinations request failed with status code: {response.status_code}")
|
584 |
+
|
585 |
+
else:
|
586 |
+
# No fallback, raise an exception for unsupported image generator
|
587 |
+
error_msg = f"Unsupported image generator: {self.image_gen}"
|
588 |
+
self.log(error(error_msg))
|
589 |
+
raise ValueError(error_msg)
|
590 |
+
|
591 |
+
def generate_speech(self, text, output_format='mp3') -> str:
|
592 |
+
"""Generate speech from text using the selected TTS engine."""
|
593 |
+
self.progress(0.6, desc="Creating voiceover")
|
594 |
+
self.log("Generating speech from text")
|
595 |
+
|
596 |
+
# Clean text
|
597 |
+
text = re.sub(r'[^\w\s.?!,;:\'"-]', '', text)
|
598 |
+
|
599 |
+
self.log(f"Using TTS Engine: {self.tts_engine}, Voice: {self.tts_voice}")
|
600 |
+
|
601 |
+
# Always save to the generation folder when available
|
602 |
+
if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
|
603 |
+
audio_path = os.path.join(self.generation_folder, f"speech_{uuid.uuid4()}_{int(time.time())}.{output_format}")
|
604 |
+
else:
|
605 |
+
# Use STORAGE_DIR if no generation folder
|
606 |
+
audio_path = os.path.join(STORAGE_DIR, f"speech_{uuid.uuid4()}_{int(time.time())}.{output_format}")
|
607 |
+
|
608 |
+
if self.tts_engine == "elevenlabs":
|
609 |
+
self.log("Using ElevenLabs provider for speech generation")
|
610 |
+
elevenlabs_api_key = os.environ.get("ELEVENLABS_API_KEY", "")
|
611 |
+
if not elevenlabs_api_key:
|
612 |
+
raise ValueError("ElevenLabs API key is not set. Please provide a valid API key.")
|
613 |
+
|
614 |
+
headers = {
|
615 |
+
"Accept": "audio/mpeg",
|
616 |
+
"Content-Type": "application/json",
|
617 |
+
"xi-api-key": elevenlabs_api_key
|
618 |
+
}
|
619 |
+
|
620 |
+
payload = {
|
621 |
+
"text": text,
|
622 |
+
"model_id": "eleven_turbo_v2", # Using latest and most capable model
|
623 |
+
"voice_settings": {
|
624 |
+
"stability": 0.5,
|
625 |
+
"similarity_boost": 0.5,
|
626 |
+
"style": 0.0,
|
627 |
+
"use_speaker_boost": True
|
628 |
+
},
|
629 |
+
"output_format": "mp3_44100_128", # Higher quality audio (44.1kHz, 128kbps)
|
630 |
+
"optimize_streaming_latency": 0 # Optimize for quality over latency
|
631 |
+
}
|
632 |
+
|
633 |
+
# Map voice names to ElevenLabs voice IDs
|
634 |
+
voice_id_mapping = {
|
635 |
+
"Sarah": "21m00Tcm4TlvDq8ikWAM",
|
636 |
+
"Brian": "hxppwzoRmvxK7YkDrjhQ",
|
637 |
+
"Lily": "p7TAj7L6QVq1fE6XGyjR",
|
638 |
+
"Monika Sogam": "Fc3XhIu9tfgOPOsU1hMr",
|
639 |
+
"George": "o7lPjDgzlF8ZAeSpqmaN",
|
640 |
+
"River": "f0k5evLkhJxrIRJXQJvy",
|
641 |
+
"Matilda": "XrExE9yKIg1WjnnlVkGX",
|
642 |
+
"Will": "pvKWM1B1sNRNTlEYYAEZ",
|
643 |
+
"Jessica": "A5EAMYWMCSsLNL1wYxOv",
|
644 |
+
"default": "21m00Tcm4TlvDq8ikWAM" # Default to Sarah
|
645 |
+
}
|
646 |
+
|
647 |
+
# Get the voice ID from mapping or use the voice name as ID if not found
|
648 |
+
voice_id = voice_id_mapping.get(self.tts_voice, self.tts_voice)
|
649 |
+
|
650 |
+
self.log(f"Using ElevenLabs voice: {self.tts_voice} (ID: {voice_id})")
|
651 |
+
|
652 |
+
response = requests.post(
|
653 |
+
url=f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
|
654 |
+
json=payload,
|
655 |
+
headers=headers
|
656 |
+
)
|
657 |
+
|
658 |
+
if response.status_code == 200:
|
659 |
+
with open(audio_path, 'wb') as f:
|
660 |
+
f.write(response.content)
|
661 |
+
self.log(success(f"Speech generated successfully using ElevenLabs at {audio_path}"))
|
662 |
+
else:
|
663 |
+
try:
|
664 |
+
error_data = response.json()
|
665 |
+
error_message = error_data.get('detail', {}).get('message', response.text)
|
666 |
+
error_status = error_data.get('status', 'error')
|
667 |
+
raise Exception(f"ElevenLabs API error ({response.status_code}, {error_status}): {error_message}")
|
668 |
+
except ValueError:
|
669 |
+
# If JSON parsing fails, use the raw response
|
670 |
+
raise Exception(f"ElevenLabs API error ({response.status_code}): {response.text}")
|
671 |
+
|
672 |
+
elif self.tts_engine == "gtts":
|
673 |
+
self.log("Using Google TTS provider for speech generation")
|
674 |
+
from gtts import gTTS
|
675 |
+
tts = gTTS(text=text, lang=self.language[:2].lower(), slow=False)
|
676 |
+
tts.save(audio_path)
|
677 |
+
|
678 |
+
elif self.tts_engine == "openai":
|
679 |
+
self.log("Using OpenAI provider for speech generation")
|
680 |
+
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
|
681 |
+
if not openai_api_key:
|
682 |
+
raise ValueError("OpenAI API key is not set. Please provide a valid API key.")
|
683 |
+
|
684 |
+
from openai import OpenAI
|
685 |
+
client = OpenAI(api_key=openai_api_key)
|
686 |
+
|
687 |
+
voice = self.tts_voice if self.tts_voice else "alloy"
|
688 |
+
response = client.audio.speech.create(
|
689 |
+
model="tts-1",
|
690 |
+
voice=voice,
|
691 |
+
input=text
|
692 |
+
)
|
693 |
+
response.stream_to_file(audio_path)
|
694 |
+
|
695 |
+
elif self.tts_engine == "edge":
|
696 |
+
self.log("Using Edge TTS provider for speech generation")
|
697 |
+
import edge_tts
|
698 |
+
import asyncio
|
699 |
+
|
700 |
+
voice = self.tts_voice if self.tts_voice else "en-US-AriaNeural"
|
701 |
+
|
702 |
+
async def generate():
|
703 |
+
communicate = edge_tts.Communicate(text, voice)
|
704 |
+
await communicate.save(audio_path)
|
705 |
+
|
706 |
+
asyncio.run(generate())
|
707 |
+
|
708 |
+
else:
|
709 |
+
# No fallback, raise an exception for unsupported TTS engine
|
710 |
+
error_msg = f"Unsupported TTS engine: {self.tts_engine}"
|
711 |
+
self.log(error(error_msg))
|
712 |
+
raise ValueError(error_msg)
|
713 |
+
|
714 |
+
self.log(success(f"Speech generated and saved to: {audio_path}"))
|
715 |
+
self.tts_path = audio_path
|
716 |
+
return audio_path
|
717 |
+
|
718 |
+
def generate_subtitles(self, audio_path: str) -> dict:
|
719 |
+
"""Generate subtitles from audio using AssemblyAI."""
|
720 |
+
# If subtitles are disabled, return empty data with settings
|
721 |
+
if not self.subtitles_enabled:
|
722 |
+
self.log("Subtitles are disabled, skipping generation")
|
723 |
+
return {
|
724 |
+
"wordlevel": [],
|
725 |
+
"linelevel": [],
|
726 |
+
"settings": {
|
727 |
+
"font": self.subtitle_font,
|
728 |
+
"fontsize": self.font_size,
|
729 |
+
"color": self.text_color,
|
730 |
+
"bg_color": self.highlight_color if self.highlighting_enabled else None,
|
731 |
+
"position": self.subtitle_position,
|
732 |
+
"highlighting_enabled": self.highlighting_enabled,
|
733 |
+
"subtitles_enabled": self.subtitles_enabled
|
734 |
+
}
|
735 |
+
}
|
736 |
+
|
737 |
+
self.log("Generating subtitles from audio")
|
738 |
+
try:
|
739 |
+
import assemblyai as aai
|
740 |
+
|
741 |
+
# Check if API key is set
|
742 |
+
aai_api_key = os.environ.get("ASSEMBLYAI_API_KEY", "")
|
743 |
+
if not aai_api_key:
|
744 |
+
raise ValueError("AssemblyAI API key is not set. Please provide a valid API key.")
|
745 |
+
|
746 |
+
aai.settings.api_key = aai_api_key
|
747 |
+
|
748 |
+
config = aai.TranscriptionConfig(speaker_labels=False, word_boost=[], format_text=True)
|
749 |
+
transcriber = aai.Transcriber(config=config)
|
750 |
+
|
751 |
+
self.log("Submitting audio for transcription")
|
752 |
+
transcript = transcriber.transcribe(audio_path)
|
753 |
+
|
754 |
+
if not transcript or not transcript.words:
|
755 |
+
raise ValueError("Transcription returned no words.")
|
756 |
+
|
757 |
+
# Process word-level information
|
758 |
+
wordlevel_info = []
|
759 |
+
for word in transcript.words:
|
760 |
+
word_data = {
|
761 |
+
"word": word.text.strip(),
|
762 |
+
"start": word.start / 1000.0, # Convert from ms to seconds
|
763 |
+
"end": word.end / 1000.0 # Convert from ms to seconds
|
764 |
+
}
|
765 |
+
wordlevel_info.append(word_data)
|
766 |
+
|
767 |
+
self.log(success(f"Transcription successful. Got {len(wordlevel_info)} words."))
|
768 |
+
|
769 |
+
# Define constants for subtitle generation
|
770 |
+
# Handle random font selection if configured
|
771 |
+
if self.subtitle_font == "random":
|
772 |
+
FONT = choose_random_font()
|
773 |
+
self.log(f"Using random font: {FONT}")
|
774 |
+
else:
|
775 |
+
FONT = self.subtitle_font
|
776 |
+
|
777 |
+
FONTSIZE = self.font_size
|
778 |
+
COLOR = self.text_color
|
779 |
+
BG_COLOR = self.highlight_color if self.highlighting_enabled else None
|
780 |
+
FRAME_SIZE = (1080, 1920) # Vertical video format
|
781 |
+
|
782 |
+
# Constants for line splitting
|
783 |
+
MAX_CHARS = 30 # Maximum characters per line for vertical video format
|
784 |
+
MAX_DURATION = 3.0 # Maximum duration for a single line
|
785 |
+
MAX_GAP = 1.5 # Split if nothing is spoken for this many seconds
|
786 |
+
|
787 |
+
# Split text into lines
|
788 |
+
subtitles = []
|
789 |
+
line = []
|
790 |
+
line_duration = 0
|
791 |
+
|
792 |
+
for idx, word_data in enumerate(wordlevel_info):
|
793 |
+
word = word_data["word"]
|
794 |
+
start = word_data["start"]
|
795 |
+
end = word_data["end"]
|
796 |
+
|
797 |
+
line.append(word_data)
|
798 |
+
line_duration += end - start
|
799 |
+
|
800 |
+
temp = " ".join(item["word"] for item in line)
|
801 |
+
new_line_chars = len(temp)
|
802 |
+
|
803 |
+
duration_exceeded = line_duration > MAX_DURATION
|
804 |
+
chars_exceeded = new_line_chars > MAX_CHARS
|
805 |
+
|
806 |
+
if idx > 0:
|
807 |
+
gap = word_data['start'] - wordlevel_info[idx-1]['end']
|
808 |
+
maxgap_exceeded = gap > MAX_GAP
|
809 |
+
else:
|
810 |
+
maxgap_exceeded = False
|
811 |
+
|
812 |
+
if duration_exceeded or chars_exceeded or maxgap_exceeded:
|
813 |
+
if line:
|
814 |
+
subtitle_line = {
|
815 |
+
"text": " ".join(item["word"] for item in line),
|
816 |
+
"start": line[0]["start"],
|
817 |
+
"end": line[-1]["end"],
|
818 |
+
"words": line
|
819 |
+
}
|
820 |
+
subtitles.append(subtitle_line)
|
821 |
+
line = []
|
822 |
+
line_duration = 0
|
823 |
+
|
824 |
+
# Add remaining words as last line
|
825 |
+
if line:
|
826 |
+
subtitle_line = {
|
827 |
+
"text": " ".join(item["word"] for item in line),
|
828 |
+
"start": line[0]["start"],
|
829 |
+
"end": line[-1]["end"],
|
830 |
+
"words": line
|
831 |
+
}
|
832 |
+
subtitles.append(subtitle_line)
|
833 |
+
|
834 |
+
self.log(success(f"Generated {len(subtitles)} subtitle lines"))
|
835 |
+
|
836 |
+
# Return the subtitle data and settings
|
837 |
+
return {
|
838 |
+
"wordlevel": wordlevel_info,
|
839 |
+
"linelevel": subtitles,
|
840 |
+
"settings": {
|
841 |
+
"font": FONT,
|
842 |
+
"fontsize": FONTSIZE,
|
843 |
+
"color": COLOR,
|
844 |
+
"bg_color": BG_COLOR,
|
845 |
+
"position": self.subtitle_position,
|
846 |
+
"highlighting_enabled": self.highlighting_enabled,
|
847 |
+
"subtitles_enabled": self.subtitles_enabled
|
848 |
+
}
|
849 |
+
}
|
850 |
+
|
851 |
+
except Exception as e:
|
852 |
+
error_msg = f"Error generating subtitles: {str(e)}"
|
853 |
+
self.log(error(error_msg))
|
854 |
+
raise Exception(error_msg)
|
855 |
+
|
856 |
+
def create_subtitle_clip(self, subtitle_data, frame_size):
|
857 |
+
"""Create subtitle clips for a line of text with word-level highlighting."""
|
858 |
+
# Early return if subtitles are disabled
|
859 |
+
if not subtitle_data.get("settings", {}).get("subtitles_enabled", True):
|
860 |
+
self.log("Subtitles are disabled, skipping subtitle clip creation")
|
861 |
+
return []
|
862 |
+
|
863 |
+
settings = subtitle_data["settings"]
|
864 |
+
font_name = settings["font"]
|
865 |
+
fontsize = settings["fontsize"]
|
866 |
+
color = settings["color"]
|
867 |
+
bg_color = settings["bg_color"]
|
868 |
+
highlighting_enabled = settings["highlighting_enabled"]
|
869 |
+
|
870 |
+
# Pre-load font and calculate color values once
|
871 |
+
try:
|
872 |
+
font_path = os.path.join(FONTS_DIR, f"{font_name}.ttf")
|
873 |
+
if os.path.exists(font_path):
|
874 |
+
pil_font = ImageFont.truetype(font_path, fontsize)
|
875 |
+
else:
|
876 |
+
self.log(warning(f"Font {font_name} not found, using default"))
|
877 |
+
pil_font = ImageFont.load_default()
|
878 |
+
except Exception as e:
|
879 |
+
self.log(warning(f"Error loading font: {str(e)}"))
|
880 |
+
pil_font = ImageFont.load_default()
|
881 |
+
|
882 |
+
# Parse colors once
|
883 |
+
if color.startswith('#'):
|
884 |
+
text_color_rgb = tuple(int(color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
|
885 |
+
else:
|
886 |
+
text_color_rgb = (255, 255, 255) # Default white
|
887 |
+
|
888 |
+
if bg_color and bg_color.startswith('#'):
|
889 |
+
bg_color_rgb = tuple(int(bg_color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
|
890 |
+
else:
|
891 |
+
bg_color_rgb = (0, 0, 255) # Default blue
|
892 |
+
|
893 |
+
# Optimize text clip creation - cache clips for reuse
|
894 |
+
clip_cache = {}
|
895 |
+
|
896 |
+
def create_text_clip(text, bg_color=None, cache_key=None):
|
897 |
+
# Use cache when possible for better performance
|
898 |
+
if cache_key and cache_key in clip_cache:
|
899 |
+
return clip_cache[cache_key]
|
900 |
+
|
901 |
+
try:
|
902 |
+
# Get text size
|
903 |
+
text_width, text_height = pil_font.getbbox(text)[2:4]
|
904 |
+
|
905 |
+
# Add padding
|
906 |
+
padding = 10
|
907 |
+
img_width = text_width + padding * 2
|
908 |
+
img_height = text_height + padding * 2
|
909 |
+
|
910 |
+
# Create image with background color or transparent
|
911 |
+
if bg_color:
|
912 |
+
img = Image.new('RGB', (img_width, img_height), color=bg_color_rgb)
|
913 |
+
else:
|
914 |
+
img = Image.new('RGBA', (img_width, img_height), color=(0, 0, 0, 0))
|
915 |
+
|
916 |
+
# Draw text
|
917 |
+
draw = ImageDraw.Draw(img)
|
918 |
+
draw.text((padding, padding), text, font=pil_font, fill=text_color_rgb)
|
919 |
+
|
920 |
+
# Convert to numpy array for MoviePy
|
921 |
+
img_array = np.array(img)
|
922 |
+
clip = ImageClip(img_array)
|
923 |
+
|
924 |
+
# Cache result for reuse
|
925 |
+
if cache_key:
|
926 |
+
clip_cache[cache_key] = (clip, img_width, img_height)
|
927 |
+
|
928 |
+
return clip, img_width, img_height
|
929 |
+
|
930 |
+
except Exception as e:
|
931 |
+
self.log(warning(f"Error creating text clip: {str(e)}"))
|
932 |
+
# Create a simple colored rectangle as fallback
|
933 |
+
img = Image.new('RGB', (100, 50), color=(100, 100, 100))
|
934 |
+
img_array = np.array(img)
|
935 |
+
clip = ImageClip(img_array)
|
936 |
+
return clip, 100, 50
|
937 |
+
|
938 |
+
subtitle_clips = []
|
939 |
+
|
940 |
+
# Calculate position constants once
|
941 |
+
if settings["position"] == "top":
|
942 |
+
y_buffer = frame_size[1] * 0.1 # 10% from top
|
943 |
+
elif settings["position"] == "middle":
|
944 |
+
y_buffer = frame_size[1] * 0.4 # 40% from top
|
945 |
+
else: # bottom
|
946 |
+
y_buffer = frame_size[1] * 0.7 # 70% from top
|
947 |
+
|
948 |
+
max_width = frame_size[0] * 0.8 # 80% of frame width
|
949 |
+
|
950 |
+
# Group words by timing to reduce number of clips (optimization)
|
951 |
+
word_groups = {}
|
952 |
+
|
953 |
+
# Process each line more efficiently by grouping
|
954 |
+
for line_idx, line in enumerate(subtitle_data["linelevel"]):
|
955 |
+
# Group words by start/end times to reduce clip count
|
956 |
+
line_text = line["text"]
|
957 |
+
line_start = line["start"]
|
958 |
+
line_end = line["end"]
|
959 |
+
line_duration = line_end - line_start
|
960 |
+
|
961 |
+
# First pass: calculate word dimensions and break text into lines
|
962 |
+
lines_data = [] # Store data for each line (words, positions)
|
963 |
+
current_line = []
|
964 |
+
current_x = 0
|
965 |
+
|
966 |
+
for word_data in line["words"]:
|
967 |
+
word = word_data["word"]
|
968 |
+
# Calculate dimensions without creating image yet
|
969 |
+
word_width = pil_font.getbbox(word)[2] + 20 # Add padding
|
970 |
+
word_height = pil_font.getbbox(word)[3] + 20
|
971 |
+
|
972 |
+
# Check if word fits on current line
|
973 |
+
if current_x + word_width > max_width and current_line:
|
974 |
+
# Complete current line
|
975 |
+
lines_data.append({
|
976 |
+
"words": current_line.copy(),
|
977 |
+
"total_width": current_x,
|
978 |
+
"height": max(w["height"] for w in current_line) if current_line else word_height
|
979 |
+
})
|
980 |
+
current_line = []
|
981 |
+
current_x = 0
|
982 |
+
|
983 |
+
# Add word to current line
|
984 |
+
word_info = {
|
985 |
+
"word": word,
|
986 |
+
"width": word_width,
|
987 |
+
"height": word_height,
|
988 |
+
"start": word_data["start"],
|
989 |
+
"end": word_data["end"]
|
990 |
+
}
|
991 |
+
current_line.append(word_info)
|
992 |
+
current_x += word_width
|
993 |
+
|
994 |
+
# Add the last line if needed
|
995 |
+
if current_line:
|
996 |
+
lines_data.append({
|
997 |
+
"words": current_line,
|
998 |
+
"total_width": current_x,
|
999 |
+
"height": max(w["height"] for w in current_line)
|
1000 |
+
})
|
1001 |
+
|
1002 |
+
# Second pass: Create clip for each line (batch processing)
|
1003 |
+
current_y = y_buffer
|
1004 |
+
|
1005 |
+
for line_data in lines_data:
|
1006 |
+
# Calculate center position for entire line
|
1007 |
+
line_width = line_data["total_width"]
|
1008 |
+
x_center = (frame_size[0] - line_width) / 2
|
1009 |
+
|
1010 |
+
# Create text clip for complete line (non-highlighted base)
|
1011 |
+
line_text = " ".join(w["word"] for w in line_data["words"])
|
1012 |
+
cache_key = f"line_{line_idx}_{line_text}"
|
1013 |
+
line_clip, measured_width, _ = create_text_clip(line_text, None, cache_key)
|
1014 |
+
|
1015 |
+
# Position the line in the center
|
1016 |
+
line_clip = line_clip.set_position((x_center, current_y))
|
1017 |
+
line_clip = line_clip.set_start(line["start"]).set_duration(line_duration)
|
1018 |
+
subtitle_clips.append(line_clip)
|
1019 |
+
|
1020 |
+
# Add highlighted words if enabled (more efficiently)
|
1021 |
+
if highlighting_enabled and bg_color:
|
1022 |
+
current_x = x_center
|
1023 |
+
|
1024 |
+
# Group words with same timing to reduce clip count
|
1025 |
+
timing_groups = {}
|
1026 |
+
|
1027 |
+
for word_info in line_data["words"]:
|
1028 |
+
timing_key = f"{word_info['start']:.3f}_{word_info['end']:.3f}"
|
1029 |
+
if timing_key not in timing_groups:
|
1030 |
+
timing_groups[timing_key] = []
|
1031 |
+
timing_groups[timing_key].append((word_info, current_x))
|
1032 |
+
current_x += word_info["width"]
|
1033 |
+
|
1034 |
+
# Create one clip per timing group instead of per word
|
1035 |
+
for timing_key, word_group in timing_groups.items():
|
1036 |
+
start_time, end_time = map(float, timing_key.split('_'))
|
1037 |
+
|
1038 |
+
# If only one word in this timing, create single highlight
|
1039 |
+
if len(word_group) == 1:
|
1040 |
+
word_info, x_pos = word_group[0]
|
1041 |
+
word = word_info["word"]
|
1042 |
+
|
1043 |
+
cache_key = f"word_{word}"
|
1044 |
+
highlight_clip, _, _ = create_text_clip(word, bg_color, cache_key)
|
1045 |
+
highlight_clip = highlight_clip.set_position((x_pos, current_y))
|
1046 |
+
highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
|
1047 |
+
subtitle_clips.append(highlight_clip)
|
1048 |
+
else:
|
1049 |
+
# Multiple words with same timing - try to batch if adjacent
|
1050 |
+
# (This is an optimization for words that appear together)
|
1051 |
+
continue_batch = True
|
1052 |
+
batch_start_idx = 0
|
1053 |
+
|
1054 |
+
while continue_batch and batch_start_idx < len(word_group):
|
1055 |
+
# Start a new batch
|
1056 |
+
batch = [word_group[batch_start_idx]]
|
1057 |
+
batch_x = word_group[batch_start_idx][1]
|
1058 |
+
current_batch_end = batch_start_idx
|
1059 |
+
|
1060 |
+
# Try to extend batch with adjacent words
|
1061 |
+
for i in range(batch_start_idx + 1, len(word_group)):
|
1062 |
+
prev_word, prev_x = word_group[i-1]
|
1063 |
+
curr_word, curr_x = word_group[i]
|
1064 |
+
|
1065 |
+
# Check if words are adjacent
|
1066 |
+
if abs(prev_x + prev_word["width"] - curr_x) < 5: # Small tolerance
|
1067 |
+
batch.append(word_group[i])
|
1068 |
+
current_batch_end = i
|
1069 |
+
else:
|
1070 |
+
break
|
1071 |
+
|
1072 |
+
# Create clip for this batch
|
1073 |
+
if len(batch) > 1:
|
1074 |
+
# Multiple adjacent words - create single highlight
|
1075 |
+
batch_text = " ".join(info[0]["word"] for info in batch)
|
1076 |
+
batch_width = batch[-1][1] + batch[-1][0]["width"] - batch[0][1]
|
1077 |
+
|
1078 |
+
cache_key = f"batch_{batch_text}"
|
1079 |
+
highlight_clip, _, _ = create_text_clip(batch_text, bg_color, cache_key)
|
1080 |
+
highlight_clip = highlight_clip.set_position((batch_x, current_y))
|
1081 |
+
highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
|
1082 |
+
subtitle_clips.append(highlight_clip)
|
1083 |
+
else:
|
1084 |
+
# Single word in batch
|
1085 |
+
word_info, x_pos = batch[0]
|
1086 |
+
word = word_info["word"]
|
1087 |
+
|
1088 |
+
cache_key = f"word_{word}"
|
1089 |
+
highlight_clip, _, _ = create_text_clip(word, bg_color, cache_key)
|
1090 |
+
highlight_clip = highlight_clip.set_position((x_pos, current_y))
|
1091 |
+
highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
|
1092 |
+
subtitle_clips.append(highlight_clip)
|
1093 |
+
|
1094 |
+
# Move to next batch
|
1095 |
+
batch_start_idx = current_batch_end + 1
|
1096 |
+
if batch_start_idx >= len(word_group):
|
1097 |
+
continue_batch = False
|
1098 |
+
|
1099 |
+
# Move to next line
|
1100 |
+
current_y += line_data["height"] + 10
|
1101 |
+
|
1102 |
+
# Limit the number of subtitle clips to avoid memory issues
|
1103 |
+
if len(subtitle_clips) > 200:
|
1104 |
+
self.log(warning(f"Too many subtitle clips ({len(subtitle_clips)}), limiting to 200 for performance"))
|
1105 |
+
subtitle_clips = subtitle_clips[:200]
|
1106 |
+
|
1107 |
+
self.log(f"Created {len(subtitle_clips)} subtitle clips (optimized)")
|
1108 |
+
return subtitle_clips
|
1109 |
+
|
1110 |
+
def combine(self) -> str:
|
1111 |
+
"""Combine images, audio, and subtitles into a final video."""
|
1112 |
+
self.progress(0.8, desc="Creating final video")
|
1113 |
+
self.log("Combining images and audio into final video")
|
1114 |
+
try:
|
1115 |
+
# Use RAM for temporary files if possible
|
1116 |
+
import tempfile
|
1117 |
+
temp_dir = tempfile.mkdtemp()
|
1118 |
+
|
1119 |
+
# Always save to the generation folder when available
|
1120 |
+
if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
|
1121 |
+
output_path = os.path.join(self.generation_folder, f"output_{int(time.time())}.mp4")
|
1122 |
+
else:
|
1123 |
+
output_path = os.path.join(STORAGE_DIR, f"output_{int(time.time())}.mp4")
|
1124 |
+
|
1125 |
+
# Check for required files
|
1126 |
+
if not self.images:
|
1127 |
+
raise ValueError("No images available for video creation")
|
1128 |
+
|
1129 |
+
if not hasattr(self, 'tts_path') or not self.tts_path or not os.path.exists(self.tts_path):
|
1130 |
+
raise ValueError("No TTS audio file available")
|
1131 |
+
|
1132 |
+
# Load audio
|
1133 |
+
tts_clip = AudioFileClip(self.tts_path)
|
1134 |
+
max_duration = tts_clip.duration
|
1135 |
+
|
1136 |
+
# Calculate duration for each image
|
1137 |
+
num_images = len(self.images)
|
1138 |
+
req_dur = max_duration / num_images
|
1139 |
+
|
1140 |
+
# Process each image ONCE to create base clips (optimization)
|
1141 |
+
self.log("Processing images (optimized)")
|
1142 |
+
processed_clips = []
|
1143 |
+
|
1144 |
+
for image_path in self.images:
|
1145 |
+
if not os.path.exists(image_path):
|
1146 |
+
self.log(warning(f"Image not found: {image_path}, skipping"))
|
1147 |
+
continue
|
1148 |
+
|
1149 |
+
try:
|
1150 |
+
# Load and process image once
|
1151 |
+
clip = ImageClip(image_path)
|
1152 |
+
|
1153 |
+
# Use lower FPS for slideshow-style videos
|
1154 |
+
clip = clip.set_fps(15)
|
1155 |
+
|
1156 |
+
# Handle aspect ratio (vertical video for shorts)
|
1157 |
+
aspect_ratio = 9/16 # Standard vertical video ratio
|
1158 |
+
if clip.w / clip.h < aspect_ratio:
|
1159 |
+
# Image is too tall, crop height
|
1160 |
+
clip = crop(
|
1161 |
+
clip,
|
1162 |
+
width=clip.w,
|
1163 |
+
height=round(clip.w / aspect_ratio),
|
1164 |
+
x_center=clip.w / 2,
|
1165 |
+
y_center=clip.h / 2
|
1166 |
+
)
|
1167 |
+
else:
|
1168 |
+
# Image is too wide, crop width
|
1169 |
+
clip = crop(
|
1170 |
+
clip,
|
1171 |
+
width=round(aspect_ratio * clip.h),
|
1172 |
+
height=clip.h,
|
1173 |
+
x_center=clip.w / 2,
|
1174 |
+
y_center=clip.h / 2
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
# Use a more efficient resolution (still good for mobile)
|
1178 |
+
clip = clip.resize((720, 1280))
|
1179 |
+
|
1180 |
+
processed_clips.append(clip)
|
1181 |
+
except Exception as e:
|
1182 |
+
self.log(warning(f"Error processing image {image_path}: {str(e)}"))
|
1183 |
+
|
1184 |
+
if not processed_clips:
|
1185 |
+
raise ValueError("No valid images could be processed")
|
1186 |
+
|
1187 |
+
# Create sequence using processed clips, repeated as needed
|
1188 |
+
self.log(f"Creating video sequence from {len(processed_clips)} clips")
|
1189 |
+
final_clips = []
|
1190 |
+
tot_dur = 0
|
1191 |
+
|
1192 |
+
while tot_dur < max_duration:
|
1193 |
+
for base_clip in processed_clips:
|
1194 |
+
duration = min(req_dur, max_duration - tot_dur)
|
1195 |
+
if duration <= 0:
|
1196 |
+
break
|
1197 |
+
|
1198 |
+
# Reuse the pre-processed clip with new duration
|
1199 |
+
duration_clip = base_clip.set_duration(duration)
|
1200 |
+
final_clips.append(duration_clip)
|
1201 |
+
tot_dur += duration
|
1202 |
+
|
1203 |
+
if tot_dur >= max_duration:
|
1204 |
+
break
|
1205 |
+
|
1206 |
+
# Create video from sequence
|
1207 |
+
self.log(f"Concatenating {len(final_clips)} clips")
|
1208 |
+
final_clip = concatenate_videoclips(final_clips)
|
1209 |
+
final_clip = final_clip.set_fps(15) # Lower FPS for slideshow-style
|
1210 |
+
|
1211 |
+
# Process audio
|
1212 |
+
final_audio = tts_clip
|
1213 |
+
|
1214 |
+
# Add background music if available and enabled
|
1215 |
+
if hasattr(self, 'enable_music') and self.enable_music and self.music_file != "none":
|
1216 |
+
music_path = None
|
1217 |
+
if self.music_file == "random":
|
1218 |
+
music_path = choose_random_music()
|
1219 |
+
elif os.path.exists(os.path.join(MUSIC_DIR, self.music_file)):
|
1220 |
+
music_path = os.path.join(MUSIC_DIR, self.music_file)
|
1221 |
+
|
1222 |
+
if music_path and os.path.exists(music_path):
|
1223 |
+
self.log(f"Adding background music: {music_path}")
|
1224 |
+
try:
|
1225 |
+
music_clip = AudioFileClip(music_path)
|
1226 |
+
# Loop music if it's shorter than the video
|
1227 |
+
if music_clip.duration < max_duration:
|
1228 |
+
num_loops = int(np.ceil(max_duration / music_clip.duration))
|
1229 |
+
music_clip = concatenate_audioclips([music_clip] * num_loops)
|
1230 |
+
# Trim music if it's longer than the video
|
1231 |
+
music_clip = music_clip.subclip(0, max_duration)
|
1232 |
+
# Set music volume
|
1233 |
+
music_volume = getattr(self, 'music_volume', 0.1)
|
1234 |
+
music_clip = music_clip.volumex(music_volume)
|
1235 |
+
# Combine with TTS audio
|
1236 |
+
final_audio = CompositeAudioClip([tts_clip, music_clip])
|
1237 |
+
except Exception as e:
|
1238 |
+
self.log(warning(f"Error processing music: {str(e)}"))
|
1239 |
+
|
1240 |
+
# Set final audio
|
1241 |
+
final_clip = final_clip.set_audio(final_audio)
|
1242 |
+
|
1243 |
+
# Add subtitles if enabled - process more efficiently
|
1244 |
+
if self.subtitles_enabled and hasattr(self, 'subtitle_data'):
|
1245 |
+
self.log("Adding subtitles (optimized)")
|
1246 |
+
subtitle_clips = self.create_subtitle_clip(self.subtitle_data, (720, 1280)) # Match new resolution
|
1247 |
+
if subtitle_clips:
|
1248 |
+
final_clip = CompositeVideoClip([final_clip] + subtitle_clips)
|
1249 |
+
|
1250 |
+
# Write final video with optimized settings
|
1251 |
+
self.log("Writing final video file (optimized encoding)")
|
1252 |
+
final_clip.write_videofile(
|
1253 |
+
output_path,
|
1254 |
+
fps=15, # Lower FPS for slideshow-style
|
1255 |
+
codec="libx264",
|
1256 |
+
audio_codec="aac",
|
1257 |
+
threads=8, # More threads for faster encoding
|
1258 |
+
preset="ultrafast", # Fastest encoding preset
|
1259 |
+
ffmpeg_params=["-crf", "28"] # Lower quality for speed
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
# Clean up temporary directory
|
1263 |
+
import shutil
|
1264 |
+
try:
|
1265 |
+
shutil.rmtree(temp_dir, ignore_errors=True)
|
1266 |
+
except Exception:
|
1267 |
+
pass
|
1268 |
+
|
1269 |
+
self.log(success(f"Video saved to: {output_path}"))
|
1270 |
+
return output_path
|
1271 |
+
|
1272 |
+
except Exception as e:
|
1273 |
+
error_msg = f"Error combining video: {str(e)}"
|
1274 |
+
self.log(error(error_msg))
|
1275 |
+
raise Exception(error_msg)
|
1276 |
+
|
1277 |
+
def generate_video(self) -> dict:
|
1278 |
+
"""Generate complete video with all components."""
|
1279 |
+
try:
|
1280 |
+
self.log("Starting video generation process")
|
1281 |
+
|
1282 |
+
# Create a unique folder with sequential numbering
|
1283 |
+
folder_num = 1
|
1284 |
+
# Check existing folders to find the latest number
|
1285 |
+
if os.path.exists(STORAGE_DIR):
|
1286 |
+
existing_folders = [d for d in os.listdir(STORAGE_DIR) if os.path.isdir(os.path.join(STORAGE_DIR, d))]
|
1287 |
+
numbered_folders = []
|
1288 |
+
for folder in existing_folders:
|
1289 |
+
try:
|
1290 |
+
# Extract folder number from format "N_UUID"
|
1291 |
+
if "_" in folder:
|
1292 |
+
num = int(folder.split("_")[0])
|
1293 |
+
numbered_folders.append(num)
|
1294 |
+
except (ValueError, IndexError):
|
1295 |
+
continue
|
1296 |
+
|
1297 |
+
if numbered_folders:
|
1298 |
+
folder_num = max(numbered_folders) + 1
|
1299 |
+
|
1300 |
+
folder_id = f"{folder_num}_{str(uuid.uuid4())}"
|
1301 |
+
self.generation_folder = os.path.join(STORAGE_DIR, folder_id)
|
1302 |
+
os.makedirs(self.generation_folder, exist_ok=True)
|
1303 |
+
self.log(f"Created generation folder: {self.generation_folder}")
|
1304 |
+
|
1305 |
+
try:
|
1306 |
+
# Step 1: Generate topic
|
1307 |
+
self.log("Generating topic")
|
1308 |
+
self.generate_topic()
|
1309 |
+
|
1310 |
+
# Step 2: Generate script
|
1311 |
+
self.progress(0.1, desc="Creating script")
|
1312 |
+
self.log("Generating script")
|
1313 |
+
self.generate_script()
|
1314 |
+
|
1315 |
+
# Step 3: Generate metadata
|
1316 |
+
self.progress(0.2, desc="Creating metadata")
|
1317 |
+
self.log("Generating metadata")
|
1318 |
+
self.generate_metadata()
|
1319 |
+
|
1320 |
+
# Step 4: Generate image prompts
|
1321 |
+
self.progress(0.3, desc="Creating image prompts")
|
1322 |
+
self.log("Generating image prompts")
|
1323 |
+
self.generate_prompts()
|
1324 |
+
|
1325 |
+
# Step 5: Generate images
|
1326 |
+
self.progress(0.4, desc="Generating images")
|
1327 |
+
self.log("Generating images")
|
1328 |
+
for i, prompt in enumerate(self.image_prompts, 1):
|
1329 |
+
self.progress(0.4 + 0.2 * (i / len(self.image_prompts)),
|
1330 |
+
desc=f"Generating image {i}/{len(self.image_prompts)}")
|
1331 |
+
self.log(f"Generating image {i}/{len(self.image_prompts)}")
|
1332 |
+
self.generate_image(prompt)
|
1333 |
+
|
1334 |
+
# Step 6: Generate speech
|
1335 |
+
self.progress(0.6, desc="Creating speech")
|
1336 |
+
self.log("Generating speech")
|
1337 |
+
self.generate_speech(self.script)
|
1338 |
+
|
1339 |
+
# Step 7: Generate subtitles
|
1340 |
+
self.progress(0.7, desc="Generating subtitles")
|
1341 |
+
if self.subtitles_enabled and hasattr(self, 'tts_path') and os.path.exists(self.tts_path):
|
1342 |
+
self.subtitle_data = self.generate_subtitles(self.tts_path)
|
1343 |
+
# Save subtitles to generation folder
|
1344 |
+
if self.subtitle_data:
|
1345 |
+
try:
|
1346 |
+
# Save word-level subtitles
|
1347 |
+
if 'wordlevel' in self.subtitle_data:
|
1348 |
+
word_subtitles_path = os.path.join(self.generation_folder, "word_subtitles.json")
|
1349 |
+
with open(word_subtitles_path, 'w') as f:
|
1350 |
+
json.dump(self.subtitle_data['wordlevel'], f, indent=2)
|
1351 |
+
self.log(f"Saved word-level subtitles to: {word_subtitles_path}")
|
1352 |
+
|
1353 |
+
# Save line-level subtitles
|
1354 |
+
if 'linelevel' in self.subtitle_data:
|
1355 |
+
line_subtitles_path = os.path.join(self.generation_folder, "line_subtitles.json")
|
1356 |
+
with open(line_subtitles_path, 'w') as f:
|
1357 |
+
json.dump(self.subtitle_data['linelevel'], f, indent=2)
|
1358 |
+
self.log(f"Saved line-level subtitles to: {line_subtitles_path}")
|
1359 |
+
except Exception as e:
|
1360 |
+
self.log(warning(f"Error saving subtitles to generation folder: {str(e)}"))
|
1361 |
+
|
1362 |
+
# Step 8: Save content.txt with all metadata and generation info
|
1363 |
+
self.progress(0.75, desc="Saving generation data")
|
1364 |
+
try:
|
1365 |
+
content_path = os.path.join(self.generation_folder, "content.txt")
|
1366 |
+
with open(content_path, 'w', encoding='utf-8') as f:
|
1367 |
+
f.write(f"NICHE: {self.niche}\n\n")
|
1368 |
+
f.write(f"LANGUAGE: {self.language}\n\n")
|
1369 |
+
f.write(f"GENERATED TOPIC: {self.subject}\n\n")
|
1370 |
+
f.write(f"GENERATED SCRIPT:\n{self.script}\n\n")
|
1371 |
+
f.write(f"GENERATED PROMPTS:\n")
|
1372 |
+
for i, prompt in enumerate(self.image_prompts, 1):
|
1373 |
+
f.write(f"{i}. {prompt}\n")
|
1374 |
+
f.write("\n")
|
1375 |
+
f.write(f"GENERATED METADATA:\n")
|
1376 |
+
for key, value in self.metadata.items():
|
1377 |
+
f.write(f"{key}: {value}\n")
|
1378 |
+
self.log(f"Saved content.txt to: {content_path}")
|
1379 |
+
except Exception as e:
|
1380 |
+
self.log(warning(f"Error saving content.txt: {str(e)}"))
|
1381 |
+
|
1382 |
+
# Step 9: Combine all elements into final video with optimized rendering
|
1383 |
+
self.progress(0.8, desc="Creating final video")
|
1384 |
+
self.log("Combining all elements into final video (optimized rendering)")
|
1385 |
+
|
1386 |
+
# Clear memory before video rendering
|
1387 |
+
import gc
|
1388 |
+
gc.collect()
|
1389 |
+
|
1390 |
+
path = self.combine()
|
1391 |
+
|
1392 |
+
self.progress(0.95, desc="Finalizing")
|
1393 |
+
self.log(f"Video generation complete. Files saved in: {self.generation_folder}")
|
1394 |
+
|
1395 |
+
# Return the result
|
1396 |
+
return {
|
1397 |
+
'video_path': path,
|
1398 |
+
'generation_folder': self.generation_folder,
|
1399 |
+
'title': self.metadata['title'],
|
1400 |
+
'description': self.metadata['description'],
|
1401 |
+
'subject': self.subject,
|
1402 |
+
'script': self.script,
|
1403 |
+
'logs': self.logs
|
1404 |
+
}
|
1405 |
+
except Exception as e:
|
1406 |
+
error_msg = f"Error during video generation step: {str(e)}"
|
1407 |
+
self.log(error(error_msg))
|
1408 |
+
# Try to clean up any resources
|
1409 |
+
self.cleanup_resources()
|
1410 |
+
raise Exception(error_msg)
|
1411 |
+
|
1412 |
+
except Exception as e:
|
1413 |
+
error_msg = f"Error during video generation: {str(e)}"
|
1414 |
+
self.log(error(error_msg))
|
1415 |
+
raise Exception(error_msg)
|
1416 |
+
|
1417 |
+
def cleanup_resources(self):
|
1418 |
+
"""Clean up any resources to prevent memory leaks."""
|
1419 |
+
try:
|
1420 |
+
# Force close any remaining ImageMagick processes
|
1421 |
+
import psutil
|
1422 |
+
for proc in psutil.process_iter():
|
1423 |
+
try:
|
1424 |
+
# Check if process name contains ImageMagick or ffmpeg
|
1425 |
+
if 'magick' in proc.name().lower() or 'ffmpeg' in proc.name().lower():
|
1426 |
+
proc.kill()
|
1427 |
+
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
|
1428 |
+
pass
|
1429 |
+
|
1430 |
+
# Force garbage collection
|
1431 |
+
import gc
|
1432 |
+
gc.collect()
|
1433 |
+
except Exception as e:
|
1434 |
+
self.log(warning(f"Error during resource cleanup: {str(e)}"))
|
1435 |
+
pass
|
1436 |
+
|
1437 |
+
# Data for dynamic dropdowns
|
1438 |
+
def get_text_generator_models(generator):
|
1439 |
+
"""Get available models for the selected text generator."""
|
1440 |
+
models = {
|
1441 |
+
"gemini": [
|
1442 |
+
"gemini-2.0-flash",
|
1443 |
+
"gemini-2.0-flash-lite",
|
1444 |
+
"gemini-1.5-flash",
|
1445 |
+
"gemini-1.5-flash-8b",
|
1446 |
+
"gemini-1.5-pro"
|
1447 |
+
],
|
1448 |
+
"g4f": [
|
1449 |
+
"gpt-4",
|
1450 |
+
"gpt-4o",
|
1451 |
+
"gpt-3.5-turbo",
|
1452 |
+
"llama-3-70b-chat",
|
1453 |
+
"claude-3-opus-20240229",
|
1454 |
+
"claude-3-sonnet-20240229",
|
1455 |
+
"claude-3-haiku-20240307"
|
1456 |
+
],
|
1457 |
+
"openai": [
|
1458 |
+
"gpt-4o",
|
1459 |
+
"gpt-4-turbo",
|
1460 |
+
"gpt-3.5-turbo"
|
1461 |
+
]
|
1462 |
+
}
|
1463 |
+
return models.get(generator, ["default"])
|
1464 |
+
|
1465 |
+
def get_image_generator_models(generator):
|
1466 |
+
"""Get available models for the selected image generator."""
|
1467 |
+
models = {
|
1468 |
+
"prodia": [
|
1469 |
+
"sdxl",
|
1470 |
+
"realvisxl",
|
1471 |
+
"juggernaut",
|
1472 |
+
"dreamshaper",
|
1473 |
+
"dalle"
|
1474 |
+
],
|
1475 |
+
"hercai": [
|
1476 |
+
"v1",
|
1477 |
+
"v2",
|
1478 |
+
"v3",
|
1479 |
+
"lexica"
|
1480 |
+
],
|
1481 |
+
"g4f": [
|
1482 |
+
"flux",
|
1483 |
+
"dall-e-3",
|
1484 |
+
"dall-e-2",
|
1485 |
+
"midjourney"
|
1486 |
+
],
|
1487 |
+
"segmind": [
|
1488 |
+
"sdxl-turbo",
|
1489 |
+
"realistic-vision",
|
1490 |
+
"sd3"
|
1491 |
+
],
|
1492 |
+
"pollinations": [
|
1493 |
+
"default"
|
1494 |
+
]
|
1495 |
+
}
|
1496 |
+
return models.get(generator, ["default"])
|
1497 |
+
|
1498 |
+
def get_tts_voices(engine):
|
1499 |
+
"""Get available voices for the selected TTS engine."""
|
1500 |
+
voices = {
|
1501 |
+
"elevenlabs": [
|
1502 |
+
"Sarah", # Female, American accent
|
1503 |
+
"Brian", # Male, British accent
|
1504 |
+
"Lily", # Female, British accent
|
1505 |
+
"Monika Sogam", # Female, Indian accent
|
1506 |
+
"George", # Male, American accent
|
1507 |
+
"River", # Female, American accent
|
1508 |
+
"Matilda", # Female, British accent
|
1509 |
+
"Will", # Male, American accent
|
1510 |
+
"Jessica" # Female, American accent
|
1511 |
+
],
|
1512 |
+
"openai": [
|
1513 |
+
"alloy",
|
1514 |
+
"echo",
|
1515 |
+
"fable",
|
1516 |
+
"onyx",
|
1517 |
+
"nova",
|
1518 |
+
"shimmer"
|
1519 |
+
],
|
1520 |
+
"edge": [
|
1521 |
+
"en-US-AriaNeural",
|
1522 |
+
"en-US-GuyNeural",
|
1523 |
+
"en-GB-SoniaNeural",
|
1524 |
+
"en-AU-NatashaNeural"
|
1525 |
+
],
|
1526 |
+
"gtts": [
|
1527 |
+
"en",
|
1528 |
+
"es",
|
1529 |
+
"fr",
|
1530 |
+
"de",
|
1531 |
+
"it",
|
1532 |
+
"pt",
|
1533 |
+
"ru",
|
1534 |
+
"ja",
|
1535 |
+
"zh",
|
1536 |
+
"hi"
|
1537 |
+
]
|
1538 |
+
}
|
1539 |
+
return voices.get(engine, ["default"])
|
1540 |
+
|
1541 |
+
# Create the Gradio interface
|
1542 |
+
def create_interface():
|
1543 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", radius_size="lg"), title="YouTube Shorts Generator") as demo:
|
1544 |
+
with gr.Row():
|
1545 |
+
gr.Markdown(
|
1546 |
+
"""
|
1547 |
+
# 📱 YouTube Shorts Generator
|
1548 |
+
Generate engaging YouTube Shorts videos with AI. Just provide a niche and language to get started!
|
1549 |
+
"""
|
1550 |
+
)
|
1551 |
+
|
1552 |
+
with gr.Row(equal_height=True):
|
1553 |
+
# Left panel: Content Settings
|
1554 |
+
with gr.Column(scale=2, min_width=500):
|
1555 |
+
with gr.Group():
|
1556 |
+
gr.Markdown("### 📝 Content")
|
1557 |
+
niche = gr.Textbox(
|
1558 |
+
label="Niche/Topic",
|
1559 |
+
placeholder="What's your video about?",
|
1560 |
+
value="Historical Facts"
|
1561 |
+
)
|
1562 |
+
language = gr.Dropdown(
|
1563 |
+
choices=["English", "Spanish", "French", "German", "Italian", "Portuguese",
|
1564 |
+
"Russian", "Japanese", "Chinese", "Hindi"],
|
1565 |
+
label="Language",
|
1566 |
+
value="English"
|
1567 |
+
)
|
1568 |
+
|
1569 |
+
# Generator Settings
|
1570 |
+
with gr.Group():
|
1571 |
+
gr.Markdown("### 🔧 Generator Settings")
|
1572 |
+
with gr.Tabs():
|
1573 |
+
with gr.TabItem("Text"):
|
1574 |
+
text_gen = gr.Dropdown(
|
1575 |
+
choices=["g4f", "gemini", "openai"],
|
1576 |
+
label="Text Generator",
|
1577 |
+
value="g4f"
|
1578 |
+
)
|
1579 |
+
text_model = gr.Dropdown(
|
1580 |
+
choices=get_text_generator_models("g4f"),
|
1581 |
+
label="Text Model",
|
1582 |
+
value="gpt-4"
|
1583 |
+
)
|
1584 |
+
|
1585 |
+
with gr.TabItem("Image"):
|
1586 |
+
image_gen = gr.Dropdown(
|
1587 |
+
choices=["g4f", "prodia", "hercai", "segmind", "pollinations"],
|
1588 |
+
label="Image Generator",
|
1589 |
+
value="g4f"
|
1590 |
+
)
|
1591 |
+
image_model = gr.Dropdown(
|
1592 |
+
choices=get_image_generator_models("g4f"),
|
1593 |
+
label="Image Model",
|
1594 |
+
value="flux"
|
1595 |
+
)
|
1596 |
+
|
1597 |
+
with gr.TabItem("Speech"):
|
1598 |
+
tts_engine = gr.Dropdown(
|
1599 |
+
choices=["edge", "elevenlabs", "gtts", "openai"],
|
1600 |
+
label="Speech Generator",
|
1601 |
+
value="edge"
|
1602 |
+
)
|
1603 |
+
tts_voice = gr.Dropdown(
|
1604 |
+
choices=get_tts_voices("edge"),
|
1605 |
+
label="Voice",
|
1606 |
+
value="en-US-AriaNeural"
|
1607 |
+
)
|
1608 |
+
|
1609 |
+
with gr.TabItem("Audio"):
|
1610 |
+
enable_music = gr.Checkbox(label="Enable Background Music", value=True)
|
1611 |
+
# Fix for music_file - Get available music and set proper default
|
1612 |
+
music_choices = get_music_files()
|
1613 |
+
default_music = "none" if "random" not in music_choices else "random"
|
1614 |
+
music_file = gr.Dropdown(
|
1615 |
+
choices=music_choices,
|
1616 |
+
label="Background Music",
|
1617 |
+
value=default_music,
|
1618 |
+
interactive=True
|
1619 |
+
)
|
1620 |
+
music_volume = gr.Slider(
|
1621 |
+
minimum=0.0,
|
1622 |
+
maximum=1.0,
|
1623 |
+
value=0.1,
|
1624 |
+
step=0.05,
|
1625 |
+
label="Background Music Volume"
|
1626 |
+
)
|
1627 |
+
|
1628 |
+
with gr.TabItem("Subtitles"):
|
1629 |
+
subtitles_enabled = gr.Checkbox(label="Enable Subtitles", value=True)
|
1630 |
+
highlighting_enabled = gr.Checkbox(label="Enable Word Highlighting", value=True)
|
1631 |
+
subtitle_font = gr.Dropdown(
|
1632 |
+
choices=get_font_files(),
|
1633 |
+
label="Font",
|
1634 |
+
value="random"
|
1635 |
+
)
|
1636 |
+
with gr.Row():
|
1637 |
+
font_size = gr.Slider(
|
1638 |
+
minimum=40,
|
1639 |
+
maximum=120,
|
1640 |
+
value=80,
|
1641 |
+
step=5,
|
1642 |
+
label="Font Size"
|
1643 |
+
)
|
1644 |
+
subtitle_position = gr.Dropdown(
|
1645 |
+
choices=["bottom", "middle", "top"],
|
1646 |
+
label="Position",
|
1647 |
+
value="bottom"
|
1648 |
+
)
|
1649 |
+
with gr.Row():
|
1650 |
+
text_color = gr.ColorPicker(label="Text Color", value="#FFFFFF")
|
1651 |
+
highlight_color = gr.ColorPicker(label="Highlight Color", value="#0000FF")
|
1652 |
+
|
1653 |
+
# Generate button
|
1654 |
+
generate_btn = gr.Button("🎬 Generate Video", variant="primary", size="lg")
|
1655 |
+
|
1656 |
+
# Right panel: Output display
|
1657 |
+
with gr.Column(scale=1, min_width=300):
|
1658 |
+
with gr.Tabs():
|
1659 |
+
with gr.TabItem("Video"):
|
1660 |
+
# Larger video preview with proper mobile proportions
|
1661 |
+
video_output = gr.Video(label="Generated Video", height=580, width=330)
|
1662 |
+
|
1663 |
+
with gr.TabItem("Metadata"):
|
1664 |
+
title_output = gr.Textbox(label="Title", lines=2)
|
1665 |
+
description_output = gr.Textbox(label="Description", lines=4)
|
1666 |
+
script_output = gr.Textbox(label="Script", lines=8)
|
1667 |
+
|
1668 |
+
# API Keys section as a tab
|
1669 |
+
with gr.TabItem("🔑 API Keys"):
|
1670 |
+
gemini_api_key = gr.Textbox(
|
1671 |
+
label="Gemini API Key",
|
1672 |
+
type="password",
|
1673 |
+
value=os.environ.get("GEMINI_API_KEY", "")
|
1674 |
+
)
|
1675 |
+
assemblyai_api_key = gr.Textbox(
|
1676 |
+
label="AssemblyAI API Key",
|
1677 |
+
type="password",
|
1678 |
+
value=os.environ.get("ASSEMBLYAI_API_KEY", "")
|
1679 |
+
)
|
1680 |
+
elevenlabs_api_key = gr.Textbox(
|
1681 |
+
label="ElevenLabs API Key",
|
1682 |
+
type="password",
|
1683 |
+
value=os.environ.get("ELEVENLABS_API_KEY", "")
|
1684 |
+
)
|
1685 |
+
segmind_api_key = gr.Textbox(
|
1686 |
+
label="Segmind API Key",
|
1687 |
+
type="password",
|
1688 |
+
value=os.environ.get("SEGMIND_API_KEY", "")
|
1689 |
+
)
|
1690 |
+
openai_api_key = gr.Textbox(
|
1691 |
+
label="OpenAI API Key",
|
1692 |
+
type="password",
|
1693 |
+
value=os.environ.get("OPENAI_API_KEY", "")
|
1694 |
+
)
|
1695 |
+
|
1696 |
+
with gr.TabItem("Log"):
|
1697 |
+
log_output = gr.Textbox(label="Process Log", lines=15, max_lines=100)
|
1698 |
+
|
1699 |
+
# Dynamic dropdown updates
|
1700 |
+
def update_text_models(generator):
|
1701 |
+
return gr.Dropdown(choices=get_text_generator_models(generator))
|
1702 |
+
|
1703 |
+
def update_image_models(generator):
|
1704 |
+
return gr.Dropdown(choices=get_image_generator_models(generator))
|
1705 |
+
|
1706 |
+
def update_tts_voices(engine):
|
1707 |
+
return gr.Dropdown(choices=get_tts_voices(engine))
|
1708 |
+
|
1709 |
+
# Connect the change events
|
1710 |
+
text_gen.change(fn=update_text_models, inputs=text_gen, outputs=text_model)
|
1711 |
+
image_gen.change(fn=update_image_models, inputs=image_gen, outputs=image_model)
|
1712 |
+
tts_engine.change(fn=update_tts_voices, inputs=tts_engine, outputs=tts_voice)
|
1713 |
+
|
1714 |
+
# Main generation function
|
1715 |
+
def generate_youtube_short(niche, language, text_gen, text_model, image_gen, image_model,
|
1716 |
+
tts_engine, tts_voice, subtitles_enabled, highlighting_enabled,
|
1717 |
+
subtitle_font, font_size, subtitle_position,
|
1718 |
+
text_color, highlight_color, music_file,
|
1719 |
+
enable_music, music_volume,
|
1720 |
+
gemini_api_key, assemblyai_api_key,
|
1721 |
+
elevenlabs_api_key, segmind_api_key, openai_api_key,
|
1722 |
+
progress=gr.Progress()):
|
1723 |
+
|
1724 |
+
if not niche.strip():
|
1725 |
+
return {
|
1726 |
+
video_output: None,
|
1727 |
+
title_output: "ERROR: Please enter a niche/topic",
|
1728 |
+
description_output: "",
|
1729 |
+
script_output: "",
|
1730 |
+
log_output: "Error: Niche/Topic is required. Please enter a valid topic and try again."
|
1731 |
+
}
|
1732 |
+
|
1733 |
+
# Create API keys dictionary
|
1734 |
+
api_keys = {
|
1735 |
+
'gemini': gemini_api_key,
|
1736 |
+
'assemblyai': assemblyai_api_key,
|
1737 |
+
'elevenlabs': elevenlabs_api_key,
|
1738 |
+
'segmind': segmind_api_key,
|
1739 |
+
'openai': openai_api_key
|
1740 |
+
}
|
1741 |
+
|
1742 |
+
try:
|
1743 |
+
# Initialize YouTube class
|
1744 |
+
yt = YouTube(
|
1745 |
+
niche=niche,
|
1746 |
+
language=language,
|
1747 |
+
text_gen=text_gen,
|
1748 |
+
text_model=text_model,
|
1749 |
+
image_gen=image_gen,
|
1750 |
+
image_model=image_model,
|
1751 |
+
tts_engine=tts_engine,
|
1752 |
+
tts_voice=tts_voice,
|
1753 |
+
subtitle_font=subtitle_font,
|
1754 |
+
font_size=font_size,
|
1755 |
+
text_color=text_color,
|
1756 |
+
highlight_color=highlight_color,
|
1757 |
+
subtitles_enabled=subtitles_enabled,
|
1758 |
+
highlighting_enabled=highlighting_enabled,
|
1759 |
+
subtitle_position=subtitle_position,
|
1760 |
+
music_file=music_file,
|
1761 |
+
enable_music=enable_music,
|
1762 |
+
music_volume=music_volume,
|
1763 |
+
api_keys=api_keys,
|
1764 |
+
progress=progress
|
1765 |
+
)
|
1766 |
+
|
1767 |
+
# Generate video
|
1768 |
+
result = yt.generate_video()
|
1769 |
+
|
1770 |
+
# Check if video was successfully created
|
1771 |
+
if not result or not result.get('video_path') or not os.path.exists(result.get('video_path', '')):
|
1772 |
+
return {
|
1773 |
+
video_output: None,
|
1774 |
+
title_output: "ERROR: Video generation failed",
|
1775 |
+
description_output: "",
|
1776 |
+
script_output: "",
|
1777 |
+
log_output: "\n".join(yt.logs)
|
1778 |
+
}
|
1779 |
+
|
1780 |
+
return {
|
1781 |
+
video_output: result['video_path'],
|
1782 |
+
title_output: result['title'],
|
1783 |
+
description_output: result['description'],
|
1784 |
+
script_output: result['script'],
|
1785 |
+
log_output: "\n".join(result['logs'])
|
1786 |
+
}
|
1787 |
+
|
1788 |
+
except Exception as e:
|
1789 |
+
import traceback
|
1790 |
+
error_details = f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
1791 |
+
return {
|
1792 |
+
video_output: None,
|
1793 |
+
title_output: f"ERROR: {str(e)}",
|
1794 |
+
description_output: "",
|
1795 |
+
script_output: "",
|
1796 |
+
log_output: error_details
|
1797 |
+
}
|
1798 |
+
|
1799 |
+
# Connect the button click event
|
1800 |
+
generate_btn.click(
|
1801 |
+
fn=generate_youtube_short,
|
1802 |
+
inputs=[
|
1803 |
+
niche, language, text_gen, text_model, image_gen, image_model,
|
1804 |
+
tts_engine, tts_voice, subtitles_enabled, highlighting_enabled,
|
1805 |
+
subtitle_font, font_size, subtitle_position, text_color, highlight_color, music_file,
|
1806 |
+
enable_music, music_volume, gemini_api_key, assemblyai_api_key, elevenlabs_api_key, segmind_api_key, openai_api_key
|
1807 |
+
],
|
1808 |
+
outputs=[video_output, title_output, description_output, script_output, log_output]
|
1809 |
+
)
|
1810 |
+
|
1811 |
+
# Add examples
|
1812 |
+
music_choices = get_music_files()
|
1813 |
+
default_music = "none" if "random" not in music_choices else "random"
|
1814 |
+
|
1815 |
+
gr.Examples(
|
1816 |
+
[
|
1817 |
+
["Historical Facts", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-AriaNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#0000FF", default_music, True, 0.1],
|
1818 |
+
["Cooking Tips", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-AriaNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#FF0000", default_music, True, 0.1],
|
1819 |
+
["Technology News", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-GuyNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#00FF00", default_music, True, 0.1],
|
1820 |
+
],
|
1821 |
+
[niche, language, text_gen, text_model, image_gen, image_model, tts_engine, tts_voice,
|
1822 |
+
subtitles_enabled, highlighting_enabled, subtitle_font, font_size,
|
1823 |
+
subtitle_position, text_color, highlight_color, music_file, enable_music, music_volume],
|
1824 |
+
label="Quick Start Templates"
|
1825 |
+
)
|
1826 |
+
|
1827 |
+
return demo
|
1828 |
+
|
1829 |
+
# Create and launch the interface
|
1830 |
+
if __name__ == "__main__":
|
1831 |
+
# Create necessary directories
|
1832 |
+
os.makedirs(STATIC_DIR, exist_ok=True)
|
1833 |
+
os.makedirs(MUSIC_DIR, exist_ok=True)
|
1834 |
+
os.makedirs(FONTS_DIR, exist_ok=True)
|
1835 |
+
os.makedirs(STORAGE_DIR, exist_ok=True)
|
1836 |
+
|
1837 |
+
# Launch the app
|
1838 |
+
demo = create_interface()
|
1839 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
python-dotenv
|
3 |
+
wheel
|
4 |
+
setuptools
|
5 |
+
termcolor
|
6 |
+
schedule
|
7 |
+
prettytable
|
8 |
+
webdriver_manager
|
9 |
+
selenium_firefox
|
10 |
+
selenium
|
11 |
+
g4f[all]
|
12 |
+
moviepy==1.0.3
|
13 |
+
Pillow==9.5.0
|
14 |
+
yagmail
|
15 |
+
assemblyai
|
16 |
+
srt_equalizer
|
17 |
+
undetected_chromedriver
|
18 |
+
platformdirs
|
19 |
+
google-generativeai
|
20 |
+
gtts
|
21 |
+
Brotli
|
22 |
+
edge-tts
|
23 |
+
playsound
|
24 |
+
telethon
|
25 |
+
PyExecJS
|
26 |
+
psutil
|
27 |
+
#TTS
|