Spaces:
Runtime error
Runtime error
File size: 15,939 Bytes
cdb697b 9c26100 cdb697b 4db3254 880f9d5 4e082c0 880f9d5 cdb697b 4db3254 9c26100 cdb697b 96d51ff cdb697b 96d51ff cdb697b 9c26100 33b36bb cdb697b 33b36bb cdb697b 33b36bb cdb697b 3c630b6 f51e14f f46b79b 3c630b6 cdb697b c0e03b4 cdb697b c0e03b4 33b36bb cdb697b bb5f2ba cdb697b 33b36bb cdb697b 9c26100 cdb697b 9c26100 cdb697b 9c26100 cdb697b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# app.py (second app by claude)
import gradio as gr
import torch
from transformers import PreTrainedTokenizerFast
from pathlib import Path
import sys
# sys.path.append(str(Path('gpt_model_code.py').resolve()))
# from gpt_model_code import load_model_n_tokenizer, generate
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# could not make importing from gpt_model_code.py work, so i copied the code here
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
#
# This file collects all the relevant code that we covered thus far
# throughout Chapters 2-5.
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
from transformers import PreTrainedTokenizerFast
GPT_CONFIG_124M = {
"vocab_size": 50000, # Vocabulary size
"context_length": 1024, # Context length
"emb_dim": 768, # Embedding dimension
"n_heads": 12, # Number of attention heads
"n_layers": 12, # Number of layers
"drop_rate": 0.1, # Dropout rate
"qkv_bias": False # Query-key-value bias
}
#####################################
# Chapter 3
#####################################
class MultiHeadAttention(nn.Module):
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
self.dropout = nn.Dropout(dropout)
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
def forward(self, x):
b, num_tokens, d_in = x.shape
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
queries = self.W_query(x)
values = self.W_value(x)
# We implicitly split the matrix by adding a `num_heads` dimension
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
keys = keys.transpose(1, 2)
queries = queries.transpose(1, 2)
values = values.transpose(1, 2)
# Compute scaled dot-product attention (aka self-attention) with a causal mask
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
# Original mask truncated to the number of tokens and converted to boolean
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
# Use the mask to fill attention scores
attn_scores.masked_fill_(mask_bool, -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
attn_weights = self.dropout(attn_weights)
# Shape: (b, num_tokens, num_heads, head_dim)
context_vec = (attn_weights @ values).transpose(1, 2)
# Combine heads, where self.d_out = self.num_heads * self.head_dim
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
context_vec = self.out_proj(context_vec) # optional projection
return context_vec
#####################################
# Chapter 4
#####################################
class LayerNorm(nn.Module):
def __init__(self, emb_dim):
super().__init__()
self.eps = 1e-5
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim))
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True, unbiased=False)
norm_x = (x - mean) / torch.sqrt(var + self.eps)
return self.scale * norm_x + self.shift
class GELU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
(x + 0.044715 * torch.pow(x, 3))
))
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
GELU(),
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
)
def forward(self, x):
return self.layers(x)
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = MultiHeadAttention(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
context_length=cfg["context_length"],
num_heads=cfg["n_heads"],
dropout=cfg["drop_rate"],
qkv_bias=cfg["qkv_bias"])
self.ff = FeedForward(cfg)
self.norm1 = LayerNorm(cfg["emb_dim"])
self.norm2 = LayerNorm(cfg["emb_dim"])
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
def forward(self, x):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
x = self.drop_shortcut(x)
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = self.drop_shortcut(x)
x = x + shortcut # Add the original input back
return x
class GPTModel(nn.Module,
PyTorchModelHubMixin, # modified to push the model to the hub (https://huggingface.co/docs/hub/en/models-uploading#upload-a-pytorch-model-using-huggingfacehub)
repo_url="https://huggingface.co/Aananda-giri/GPT2-Nepali/",
pipeline_tag="text-generation",
):
def __init__(self, cfg):
super().__init__()
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
self.drop_emb = nn.Dropout(cfg["drop_rate"])
self.trf_blocks = nn.Sequential(
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
self.final_norm = LayerNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
def forward(self, in_idx):
batch_size, seq_len = in_idx.shape
tok_embeds = self.tok_emb(in_idx)
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
x = self.drop_emb(x)
x = self.trf_blocks(x)
x = self.final_norm(x)
logits = self.out_head(x)
return logits
#####################################
# Chapter 5
#####################################
def text_to_token_ids(text, tokenizer):
encoded = tokenizer.encode(text)
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
return encoded_tensor
def token_ids_to_text(token_ids, tokenizer):
flat = token_ids.squeeze(0) # remove batch dimension
return tokenizer.decode(flat.tolist())
def load_model_n_tokenizer():
model = GPTModel.from_pretrained("Aananda-giri/GPT2-Nepali")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
tokenizer = PreTrainedTokenizerFast.from_pretrained("Aananda-giri/GPT2-Nepali")
return model, tokenizer
def generate(
model,
prompt,
tokenizer,
max_new_tokens,
temperature=0.7,
top_k=50,
top_p=None, # New parameter for nucleus sampling
eos_id=None,
repetition_penalty=1.2,
penalize_len_below=50
):
context_size = GPT_CONFIG_124M['context_length']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
idx = text_to_token_ids(prompt, tokenizer).to(device)
if not eos_id:
encoded_endoftext = tokenizer.encode("<|endoftext|>")
eos_id = encoded_endoftext[0] if encoded_endoftext else None
token_freq = {}
for step in range(max_new_tokens):
idx_cond = idx[:, -context_size:]
with torch.no_grad():
logits = model(idx_cond)
logits = logits[:, -1, :]
# Apply repetition penalty
for token_id in idx[0].tolist():
if token_id in token_freq:
logits[0, token_id] /= repetition_penalty
else:
token_freq[token_id] = 1
# Penalize EOT token for shorter sequences
if eos_id is not None and step < penalize_len_below:
logits[0, eos_id] /= (penalize_len_below - step) / penalize_len_below
# Apply temperature scaling
if temperature > 0.0:
logits = logits / temperature
# Convert logits to probabilities
probs = torch.softmax(logits, dim=-1)
# Apply top-p (nucleus) sampling if specified
if top_p:
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# Create a mask for indices to remove
indices_to_remove = sorted_indices_to_remove.scatter(dim=-1, index=sorted_indices, src=sorted_indices_to_remove)
probs = probs.masked_fill(indices_to_remove, 0.0)
# Renormalize probabilities
probs = probs / probs.sum(dim=-1, keepdim=True)
# If top_p is None, apply top-k sampling
elif top_k:
top_probs, top_indices = torch.topk(probs, top_k)
probs = torch.zeros_like(probs).scatter_(-1, top_indices, top_probs)
# Renormalize probabilities
probs = probs / probs.sum(dim=-1, keepdim=True)
# Sample from the filtered distribution
if temperature > 0.0:
idx_next = torch.multinomial(probs, num_samples=1)
else:
idx_next = torch.argmax(probs, dim=-1, keepdim=True)
if idx_next == eos_id:
break
idx = torch.cat((idx, idx_next), dim=1)
text = token_ids_to_text(idx, tokenizer)
return text
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# Load model and tokenizer once at startup
model, tokenizer = load_model_n_tokenizer()
model.eval()
import sys
def generate_text(prompt, max_new_tokens, top_k, top_p, temperature, repetition_penalty, penalize_len_below):
device = next(model.parameters()).device
# Convert top_k to None if using top_p
if top_p > 0:
top_k = None
else:
top_p = None
with torch.no_grad():
if top_k!=None:
# it expects top_k to be integer not float
top_k = int(top_k)
output_text = generate( # function uses `with torch.no_grad()` internally already
model=model,
prompt=prompt,
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
top_p=top_p,# top p sampling is prefered over top k if top_p != None
top_k=top_k,
temperature=0.7,
repetition_penalty=repetition_penalty, # New parameter: Repetition penalty factor
penalize_len_below=penalize_len_below # New parameter: Minimum content length for penalizing EOT token.
)
return output_text
css = """
#bright-textbox {
background-color: #ffeb3b; /* Bright yellow */
color: #000000; /* Black text for contrast */
border: 2px solid #fbc02d; /* Slightly darker yellow for the border */
font-size: 16px;
padding: 10px;
border-radius: 5px;
}
"""
# Create Gradio interface
with gr.Blocks(title="Nepali GPT-2 Text Generator", css=css) as interface:
gr.Markdown("# Nepali GPT-2 Text Generator")
gr.Markdown("Enter Nepali (नेपाली) text to generate content using the custom GPT2-Nepali model.")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
placeholder="यहाँ नेपाली मा इन्पुट दिनु होस् ... (please Enter Nepali text here...)" #,
# value="रामले भात"
)
max_tokens = gr.Slider(minimum=1, maximum=512, value=50, step=1, label="Max New Tokens")
with gr.Row():
with gr.Column():
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
with gr.Column():
top_k = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top K (set to 0 to use Top P)")
top_p = gr.Slider(minimum=0, maximum=1.0, value=0.9, step=0.05, label="Top P (set above 0 to use instead of Top K)")
min_length = gr.Slider(minimum=1, maximum=200, value=50, step=1, label="Minimum Length Penalty")
generate_btn = gr.Button("Generate Text")
with gr.Column():
output = gr.Textbox(label="Generated Text", lines=10)
# Add examples if you have any
gr.Examples(
examples=[
["रामले भात", 50, 50, 0, 0.7, 1.2, 50],
["नेपाल एउटा", 100, 0, 0.9, 0.8, 1.2, 100],
["नेपाल का वर्तमान प्रधानमन्त्री ", 100, 0, 0.9, 0.8, 1.2, 100],
["भारतीय प्रधानमन्त्री ", 100, 0, 0.9, 0.8, 1.2, 100],
["अमिरिकी रास्ट्रपति डोनाल्ड", 100, 0, 0.9, 0.8, 1.2, 100],
],
inputs=[prompt, max_tokens, top_k, top_p, temperature, repetition_penalty, min_length],
outputs=output,
fn=generate_text,
cache_examples=True,
)
generate_btn.click(
fn=generate_text,
inputs=[prompt, max_tokens, top_p, top_k, temperature, repetition_penalty, min_length],
outputs=output
)
'''
'''
interface.launch() |