File size: 5,683 Bytes
535dab8
 
 
b18d283
535dab8
 
 
 
c236240
b18d283
 
 
 
 
 
 
 
535dab8
b18d283
535dab8
b18d283
 
 
 
 
 
 
535dab8
 
 
 
 
 
 
 
 
 
b18d283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535dab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3eb67f
535dab8
 
 
 
 
 
016111a
 
535dab8
 
 
 
 
 
b18d283
 
535dab8
016111a
535dab8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import json
import logging
from typing import Optional
import gradio as gr
from utils.response_manager import ResponseManager 

class ChatbotInterface:
    def __init__(self, 
                 config_path: str = 'config/gradio_config.json',
                 model: str = "gpt-4o-mini",
                 temperature: float = 0,
                 max_output_tokens: int = 800,
                 max_num_results: int = 15,
                 vector_store_id: Optional[str] = None, 
                 api_key: Optional[str] = None, 
                 meta_prompt_file: Optional[str] = None):
        """
        Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager.
        :param config_path: Path to the configuration JSON file.
        :param model: The OpenAI model to use (default: 'gpt-4o-mini').
        :param temperature: The temperature for response generation (default: 0).
        :param max_output_tokens: The maximum number of output tokens (default: 800).
        :param max_num_results: The maximum number of search results to return (default: 15).
        :param vector_store_id: The ID of the vector store to use for file search.
        :param api_key: The OpenAI API key for authentication.
        :param meta_prompt_file: Path to the meta prompt file .
        """
        self.config = self.load_config(config_path)
        self.title = self.config["chatbot_title"]
        self.description = self.config["chatbot_description"]
        self.input_label = self.config["chatbot_input_label"]
        self.input_placeholder = self.config["chatbot_input_placeholder"]
        self.output_label = self.config["chatbot_output_label"]
        self.reset_button = self.config["chatbot_reset_button"]
        self.submit_button = self.config["chatbot_submit_button"]

        # Initialize ResponseManager with custom parameters
        try:
            self.response_manager = ResponseManager(
                model=model,
                temperature=temperature,
                max_output_tokens=max_output_tokens,
                max_num_results=max_num_results,
                vector_store_id=vector_store_id,
                api_key=api_key,
                meta_prompt_file=meta_prompt_file
            )
            self.generate_response = self.response_manager.generate_response  
            logging.info(
                "ChatbotInterface initialized with the following parameters:\n"
                f"  - Model: {model}\n"
                f"  - Temperature: {temperature}\n"
                f"  - Max Output Tokens: {max_output_tokens}\n"
                f"  - Max Number of Results: {max_num_results}\n"
                f"  - Vector Store ID: {vector_store_id}\n"
                f"  - API Key: {'Provided' if api_key else 'Not Provided'}\n"
                f"  - Meta Prompt File: {meta_prompt_file or 'Default'}"
            )
        except Exception as e:
            logging.error(f"Failed to initialize ResponseManager: {e}")
            raise
    
       
    @staticmethod
    def load_config(config_path: str) -> dict:
        """
        Load the configuration for Gradio GUI interface from the JSON file.
        :param config_path: Path to the configuration JSON file.
        :return: Configuration dictionary.
        """
        logging.info(f"Loading configuration from {config_path}...")
        if not os.path.exists(config_path):
            logging.error(f"Configuration file not found: {config_path}")
            raise FileNotFoundError(f"Configuration file not found: {config_path}")

        with open(config_path, 'r') as config_file:
            config = json.load(config_file)

        required_keys = [
            "chatbot_title", "chatbot_description", "chatbot_input_label",
            "chatbot_input_placeholder", "chatbot_output_label",
            "chatbot_reset_button", "chatbot_submit_button"
        ]
        for key in required_keys:
            if key not in config:
                logging.error(f"Missing required configuration key: {key}")
                raise ValueError(f"Missing required configuration key: {key}")

        logging.info("Configuration loaded successfully.")
        return config

    def reset_output(self) -> list:
        """
        Reset the chatbot output.
        :return: An empty list to reset the output.
        """
        return []

    def create_interface(self) -> gr.Blocks:
        """
        Create the Gradio Blocks interface.
        :return: A Gradio Blocks interface object.
        """
        logging.info("Creating Gradio interface...")

        # Define the Gradio Blocks interface
        with gr.Blocks() as demo:
            gr.Markdown(f"## {self.title}\n{self.description}")

            # Chatbot history component
            chatbot_output = gr.Chatbot(label=self.output_label, type="messages")

            # User input
            user_input = gr.Textbox(
                lines=2,
                label=self.input_label,
                placeholder=self.input_placeholder
            )

            # Buttons
            with gr.Row():
                reset = gr.Button(self.reset_button, variant="secondary")
                submit = gr.Button(self.submit_button, variant="primary")

            # Button actions
            submit.click(fn=self.generate_response, inputs=[user_input, chatbot_output], outputs=chatbot_output)
            user_input.submit(fn=self.generate_response, inputs=[user_input, chatbot_output], outputs=chatbot_output)
            reset.click(fn=self.reset_output, inputs=None, outputs=chatbot_output)

        logging.info("Gradio interface created successfully.")
        return demo