Spaces:
Build error
Build error
File size: 5,516 Bytes
a5a8279 c402e13 bc388c3 a5a8279 b2821a8 a5a8279 c402e13 efcd67e a5a8279 efcd67e a5a8279 5270685 c402e13 efcd67e a5a8279 5270685 bc388c3 5270685 c2fbd9e a5a8279 c402e13 5270685 c402e13 bc388c3 efcd67e bc388c3 3f14ec0 c402e13 a5a8279 bc388c3 a5a8279 caf13db a5a8279 caf13db a5a8279 fd7364c c402e13 fd7364c caf13db bc388c3 c402e13 efcd67e c402e13 efcd67e c402e13 efcd67e c402e13 fd7364c caf13db a5a8279 5270685 fd7364c efcd67e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import os
import openai
import logging
from typing import Optional
class ResponseManager:
"""
This class initializes the OpenAI client and provides methods to create responses,
maintain conversation history, and handle user queries.
"""
def __init__(self,
vector_store_id: Optional[str] = None,
api_key: Optional[str] = None,
meta_prompt_file: Optional[str] = None,
model: str = "gpt-4o-mini",
temperature: float = 0,
max_output_tokens: int = 800,
max_num_results: int = 15):
"""
Initialize the ResponseManager with optional parameters for configuration.
:param vector_store_id: The ID of the vector store to use for file search.
:param api_key: The OpenAI API key for authentication.
:param meta_prompt_file: Path to the meta prompt file (default: 'config/meta_prompt.txt').
:param model: The OpenAI model to use (default: 'gpt-4o-mini').
:param temperature: The temperature for response generation (default: 0).
:param max_output_tokens: The maximum number of output tokens (default: 800).
:param max_num_results: The maximum number of search results to return (default: 15).
"""
# Load vector_store_id and api_key from environment variables if not provided
self.vector_store_id = vector_store_id or os.getenv('VECTOR_STORE_ID')
if not self.vector_store_id:
logging.error("VECTOR_STORE_ID is not provided or set in the environment.")
raise ValueError("VECTOR_STORE_ID is required.")
self.api_key = api_key or os.getenv('OPENAI_API_KEY')
if not self.api_key:
logging.error("OPENAI_API_KEY is not provided or set in the environment.")
raise ValueError("OPENAI_API_KEY is required.")
# Initialize other attributes
self.meta_prompt_file = meta_prompt_file or 'config/meta_prompt.txt'
self.previous_response_id = None
# Initialize the OpenAI client
self.client = openai.OpenAI(api_key=self.api_key)
# Load the meta prompt from the specified file
self.meta_prompt = self._load_meta_prompt(self.meta_prompt_file)
# Set default parameters for response generation
self.model = model
self.temperature = temperature
self.max_output_tokens = max_output_tokens
self.max_num_results = max_num_results
def _load_meta_prompt(self, meta_prompt_file: str) -> str:
"""
Load the meta prompt from the specified file.
:param meta_prompt_file: Path to the meta prompt file.
:return: The meta prompt as a string.
"""
if not os.path.exists(meta_prompt_file):
logging.error(f"Meta prompt file '{meta_prompt_file}' not found.")
raise FileNotFoundError(f"Meta prompt file '{meta_prompt_file}' not found.")
with open(meta_prompt_file, 'r', encoding='utf-8') as file:
meta_prompt = file.read().strip()
logging.info(f"Meta prompt loaded successfully from '{meta_prompt_file}'.")
return meta_prompt
def generate_response(self, query: str, history: list) -> list:
"""
Generate a response to a user query using the OpenAI API.
This method interacts with the OpenAI API to create a response based on the user's query.
It supports optional parameters for model configuration and handles errors gracefully.
Args:
query (str): The user query to respond to.
history (list): The conversation history from the chatbot.
Returns:
list: A list of dictionaries representing the conversation, including the generated response.
"""
# Prepare the input for the API call
input_data = [{"role": "developer", "content": self.meta_prompt}] if self.previous_response_id is None else []
input_data.append({"role": "user", "content": query})
# Validate the query
if not query.strip():
logging.warning("Empty or invalid query received.")
warning_message = "Please enter a valid query."
input_data.append({"role": "assistant", "content": warning_message})
return history + input_data
try:
logging.info("Sending request to OpenAI API...")
response = self.client.responses.create(
model=self.model,
previous_response_id=self.previous_response_id,
input=input_data,
tools=[{
"type": "file_search",
"vector_store_ids": [self.vector_store_id],
"max_num_results": self.max_num_results
}],
temperature=self.temperature,
max_output_tokens=self.max_output_tokens
)
self.previous_response_id = response.id
logging.info("Response received successfully.")
input_data.append({"role": "assistant", "content": response.output_text})
return history + input_data
except Exception as e:
logging.error(f"An error occurred while generating a response: {e}")
error_message = "Sorry, I couldn't generate a response at this time. Please try again later."
input_data.append({"role": "assistant", "content": error_message})
return history + input_data |