import os import json import logging from typing import Optional import gradio as gr from utils.response_manager import ResponseManager class ChatbotInterface: def __init__(self, config_path: str = 'config/gradio_config.json', model: str = "gpt-4o-mini", temperature: float = 0, max_output_tokens: int = 800, max_num_results: int = 15, vector_store_id: Optional[str] = None, api_key: Optional[str] = None, meta_prompt_file: Optional[str] = None): """ Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager. :param config_path: Path to the configuration JSON file. :param model: The OpenAI model to use (default: 'gpt-4o-mini'). :param temperature: The temperature for response generation (default: 0). :param max_output_tokens: The maximum number of output tokens (default: 800). :param max_num_results: The maximum number of search results to return (default: 15). :param vector_store_id: The ID of the vector store to use for file search. :param api_key: The OpenAI API key for authentication. :param meta_prompt_file: Path to the meta prompt file . """ self.config = self.load_config(config_path) self.title = self.config["chatbot_title"] self.description = self.config["chatbot_description"] self.input_label = self.config["chatbot_input_label"] self.input_placeholder = self.config["chatbot_input_placeholder"] self.output_label = self.config["chatbot_output_label"] self.reset_button = self.config["chatbot_reset_button"] self.submit_button = self.config["chatbot_submit_button"] # Initialize ResponseManager with custom parameters try: self.response_manager = ResponseManager( model=model, temperature=temperature, max_output_tokens=max_output_tokens, max_num_results=max_num_results, vector_store_id=vector_store_id, api_key=api_key, meta_prompt_file=meta_prompt_file ) self.generate_response = self.response_manager.generate_response logging.info( "ChatbotInterface initialized with the following parameters:\n" f" - Model: {model}\n" f" - Temperature: {temperature}\n" f" - Max Output Tokens: {max_output_tokens}\n" f" - Max Number of Results: {max_num_results}\n" f" - Vector Store ID: {vector_store_id}\n" f" - API Key: {'Provided' if api_key else 'Not Provided'}\n" f" - Meta Prompt File: {meta_prompt_file or 'Default'}" ) except Exception as e: logging.error(f"Failed to initialize ResponseManager: {e}") raise @staticmethod def load_config(config_path: str) -> dict: """ Load the configuration for Gradio GUI interface from the JSON file. :param config_path: Path to the configuration JSON file. :return: Configuration dictionary. """ logging.info(f"Loading configuration from {config_path}...") if not os.path.exists(config_path): logging.error(f"Configuration file not found: {config_path}") raise FileNotFoundError(f"Configuration file not found: {config_path}") with open(config_path, 'r') as config_file: config = json.load(config_file) required_keys = [ "chatbot_title", "chatbot_description", "chatbot_input_label", "chatbot_input_placeholder", "chatbot_output_label", "chatbot_reset_button", "chatbot_submit_button" ] for key in required_keys: if key not in config: logging.error(f"Missing required configuration key: {key}") raise ValueError(f"Missing required configuration key: {key}") logging.info("Configuration loaded successfully.") return config def reset_output(self) -> list: """ Reset the chatbot output. :return: An empty list to reset the output. """ return [] def create_interface(self) -> gr.Blocks: """ Create the Gradio Blocks interface. :return: A Gradio Blocks interface object. """ logging.info("Creating Gradio interface...") # Define the Gradio Blocks interface with gr.Blocks() as demo: gr.Markdown(f"## {self.title}\n{self.description}") # Chatbot history component chatbot_output = gr.Chatbot(label=self.output_label, type="messages") # User input user_input = gr.Textbox( lines=2, label=self.input_label, placeholder=self.input_placeholder ) # Buttons with gr.Row(): reset = gr.Button(self.reset_button, variant="secondary") submit = gr.Button(self.submit_button, variant="primary") # Button actions submit.click(fn=self.generate_response, inputs=[user_input, chatbot_output], outputs=chatbot_output) user_input.submit(fn=self.generate_response, inputs=[user_input, chatbot_output], outputs=chatbot_output) reset.click(fn=self.reset_output, inputs=None, outputs=chatbot_output) logging.info("Gradio interface created successfully.") return demo