import os import openai import logging from typing import Optional class ResponseManager: """ This class initializes the OpenAI client and provides methods to create responses, maintain conversation history, and handle user queries. """ def __init__(self, vector_store_id: Optional[str] = None, api_key: Optional[str] = None, meta_prompt_file: Optional[str] = None, model: str = "gpt-4o-mini", temperature: float = 0, max_output_tokens: int = 800, max_num_results: int = 15): """ Initialize the ResponseManager with optional parameters for configuration. :param vector_store_id: The ID of the vector store to use for file search. :param api_key: The OpenAI API key for authentication. :param meta_prompt_file: Path to the meta prompt file (default: 'config/meta_prompt.txt'). :param model: The OpenAI model to use (default: 'gpt-4o-mini'). :param temperature: The temperature for response generation (default: 0). :param max_output_tokens: The maximum number of output tokens (default: 800). :param max_num_results: The maximum number of search results to return (default: 15). """ # Load vector_store_id and api_key from environment variables if not provided self.vector_store_id = vector_store_id or os.getenv('VECTOR_STORE_ID') if not self.vector_store_id: logging.error("VECTOR_STORE_ID is not provided or set in the environment.") raise ValueError("VECTOR_STORE_ID is required.") self.api_key = api_key or os.getenv('OPENAI_API_KEY') if not self.api_key: logging.error("OPENAI_API_KEY is not provided or set in the environment.") raise ValueError("OPENAI_API_KEY is required.") # Initialize other attributes self.meta_prompt_file = meta_prompt_file or 'config/meta_prompt.txt' self.previous_response_id = None # Initialize the OpenAI client self.client = openai.OpenAI(api_key=self.api_key) # Load the meta prompt from the specified file self.meta_prompt = self._load_meta_prompt(self.meta_prompt_file) # Set default parameters for response generation self.model = model self.temperature = temperature self.max_output_tokens = max_output_tokens self.max_num_results = max_num_results def _load_meta_prompt(self, meta_prompt_file: str) -> str: """ Load the meta prompt from the specified file. :param meta_prompt_file: Path to the meta prompt file. :return: The meta prompt as a string. """ if not os.path.exists(meta_prompt_file): logging.error(f"Meta prompt file '{meta_prompt_file}' not found.") raise FileNotFoundError(f"Meta prompt file '{meta_prompt_file}' not found.") with open(meta_prompt_file, 'r', encoding='utf-8') as file: meta_prompt = file.read().strip() logging.info(f"Meta prompt loaded successfully from '{meta_prompt_file}'.") return meta_prompt def generate_response(self, query: str, history: list) -> list: """ Generate a response to a user query using the OpenAI API. This method interacts with the OpenAI API to create a response based on the user's query. It supports optional parameters for model configuration and handles errors gracefully. Args: query (str): The user query to respond to. history (list): The conversation history from the chatbot. Returns: list: A list of dictionaries representing the conversation, including the generated response. """ # Prepare the input for the API call input_data = [{"role": "developer", "content": self.meta_prompt}] if self.previous_response_id is None else [] input_data.append({"role": "user", "content": query}) # Validate the query if not query.strip(): logging.warning("Empty or invalid query received.") warning_message = "Please enter a valid query." input_data.append({"role": "assistant", "content": warning_message}) return history + input_data try: logging.info("Sending request to OpenAI API...") response = self.client.responses.create( model=self.model, previous_response_id=self.previous_response_id, input=input_data, tools=[{ "type": "file_search", "vector_store_ids": [self.vector_store_id], "max_num_results": self.max_num_results }], temperature=self.temperature, max_output_tokens=self.max_output_tokens ) self.previous_response_id = response.id logging.info("Response received successfully.") input_data.append({"role": "assistant", "content": response.output_text}) return history + input_data except Exception as e: logging.error(f"An error occurred while generating a response: {e}") error_message = "Sorry, I couldn't generate a response at this time. Please try again later." input_data.append({"role": "assistant", "content": error_message}) return history + input_data