app
Browse files
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
from datetime import datetime
|
4 |
+
from newspaper import Article
|
5 |
+
from groq import Groq
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
from IPython.display import display
|
8 |
+
|
9 |
+
# Your News API key and Groq API setup
|
10 |
+
API_KEY = '446dc1fa183e4e859a7fb0daf64a6f2c'
|
11 |
+
BASE_URL = 'https://newsapi.org/v2/everything'
|
12 |
+
client = Groq(api_key="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")
|
13 |
+
|
14 |
+
# Function to fetch news based on topic
|
15 |
+
def get_news_by_topic(topic):
|
16 |
+
params = {
|
17 |
+
'q': topic,
|
18 |
+
'apiKey': API_KEY,
|
19 |
+
'language': 'en',
|
20 |
+
'sortBy': 'publishedAt',
|
21 |
+
'pageSize': 5
|
22 |
+
}
|
23 |
+
|
24 |
+
response = requests.get(BASE_URL, params=params)
|
25 |
+
news_list = []
|
26 |
+
|
27 |
+
if response.status_code == 200:
|
28 |
+
data = response.json()
|
29 |
+
|
30 |
+
if 'articles' in data:
|
31 |
+
for article in data['articles']:
|
32 |
+
title = article['title']
|
33 |
+
description = article['description']
|
34 |
+
published_at = article['publishedAt']
|
35 |
+
content = article.get('content', 'No full content available.')
|
36 |
+
url = article['url']
|
37 |
+
|
38 |
+
published_at = datetime.strptime(published_at, '%Y-%m-%dT%H:%M:%SZ')
|
39 |
+
formatted_time = published_at.strftime('%Y-%m-%d %H:%M:%S')
|
40 |
+
|
41 |
+
article_data = {
|
42 |
+
'title': title,
|
43 |
+
'description': description,
|
44 |
+
'publishedAt': formatted_time,
|
45 |
+
'content': content,
|
46 |
+
'url': url
|
47 |
+
}
|
48 |
+
|
49 |
+
news_list.append(article_data)
|
50 |
+
|
51 |
+
return news_list
|
52 |
+
|
53 |
+
# Function to fetch full article using Newspaper
|
54 |
+
def fetch_full_article_with_newspaper(url):
|
55 |
+
try:
|
56 |
+
article = Article(url)
|
57 |
+
article.download()
|
58 |
+
article.parse()
|
59 |
+
return article.text
|
60 |
+
except Exception as e:
|
61 |
+
return f"Error occurred during parsing: {str(e)}"
|
62 |
+
|
63 |
+
# Function to summarize an article using Groq's Llama 3 model
|
64 |
+
def summarize_article(client, article_content, tone):
|
65 |
+
prompt = f"""
|
66 |
+
You are a professional News Summarizer.
|
67 |
+
Your task is to summarize the provided news article while retaining all key details.
|
68 |
+
Adjust the tone and style of the summary based on the user input (e.g., "formal," "conversational," or "humorous").
|
69 |
+
|
70 |
+
# News Article:
|
71 |
+
{article_content}
|
72 |
+
|
73 |
+
# Tone/Style:
|
74 |
+
{tone}
|
75 |
+
|
76 |
+
Remove unwanted sentences in summary like "article not found" or anything unrelated to the user query.
|
77 |
+
"""
|
78 |
+
|
79 |
+
try:
|
80 |
+
chat_completion = client.chat.completions.create(
|
81 |
+
messages=[{"role": "user", "content": prompt}],
|
82 |
+
model="llama-3.1-8b-instant"
|
83 |
+
)
|
84 |
+
|
85 |
+
summary = chat_completion.choices[0].message.content.strip()
|
86 |
+
return summary
|
87 |
+
except Exception as e:
|
88 |
+
return f"An error occurred: {e}"
|
89 |
+
|
90 |
+
# Function to generate social media post content
|
91 |
+
def generate_social_media_post(summary, tone):
|
92 |
+
prompt = f"""
|
93 |
+
You are a professional social media content creator.
|
94 |
+
Your task is to create an engaging text post based on the provided news article summary while retaining all key details.
|
95 |
+
Ensure the tone matches the specified style provided.
|
96 |
+
|
97 |
+
News Article:
|
98 |
+
{summary}
|
99 |
+
|
100 |
+
Provide the text post below:
|
101 |
+
"""
|
102 |
+
|
103 |
+
try:
|
104 |
+
chat_completion = client.chat.completions.create(
|
105 |
+
messages=[{"role": "user", "content": prompt}],
|
106 |
+
model="llama-3.1-8b-instant"
|
107 |
+
)
|
108 |
+
|
109 |
+
social_media_post = chat_completion.choices[0].message.content.strip()
|
110 |
+
return social_media_post
|
111 |
+
except Exception as e:
|
112 |
+
return f"Error occurred while generating the post: {e}"
|
113 |
+
|
114 |
+
# Generate an image from news summary description using Stable Diffusion
|
115 |
+
def generate_image_from_description(description):
|
116 |
+
# Load the DiffusionPipeline for Stable Diffusion from the diffusers library
|
117 |
+
generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
118 |
+
generator.to("cuda")
|
119 |
+
|
120 |
+
# Generate the image
|
121 |
+
image = generator(description).images[0]
|
122 |
+
return image
|
123 |
+
|
124 |
+
# Streamlit UI
|
125 |
+
def main():
|
126 |
+
st.title("News Summarizer and Social Media Post Generator")
|
127 |
+
st.subheader("Generate a social media post based on the latest news summary")
|
128 |
+
|
129 |
+
# Input fields for topic and tone
|
130 |
+
topic = st.text_input("Enter the topic you want news for:")
|
131 |
+
tone = st.selectbox("Select the tone of the summary:", ["formal", "conversational", "humorous"])
|
132 |
+
|
133 |
+
if st.button("Generate Social Media Post"):
|
134 |
+
if topic:
|
135 |
+
st.write(f"Fetching news about: {topic} in {tone} tone...")
|
136 |
+
|
137 |
+
# Fetch the latest news based on the topic
|
138 |
+
news_data = get_news_by_topic(topic)
|
139 |
+
|
140 |
+
if news_data:
|
141 |
+
combined_content = ""
|
142 |
+
for article in news_data:
|
143 |
+
article_content = fetch_full_article_with_newspaper(article['url'])
|
144 |
+
summary = summarize_article(client, article_content, tone)
|
145 |
+
combined_content += summary
|
146 |
+
|
147 |
+
# Generate the enhanced description for image generation
|
148 |
+
enhanced_prompt = f"""
|
149 |
+
You are a professional artist. Given the following news summary, create a detailed and vivid description that can be used to generate an image:
|
150 |
+
{combined_content}
|
151 |
+
|
152 |
+
The description should capture the mood, setting, actions, and emotions in a way that a model can visually interpret. Include details such as time of day, character appearance, atmosphere, and background elements.
|
153 |
+
"""
|
154 |
+
|
155 |
+
chat_completion = client.chat.completions.create(
|
156 |
+
messages=[{"role": "user", "content": enhanced_prompt}],
|
157 |
+
model="llama3-8b-8192"
|
158 |
+
)
|
159 |
+
|
160 |
+
enhanced_description = chat_completion.choices[0].message.content
|
161 |
+
st.write("### Enhanced Description for Image Generation:")
|
162 |
+
st.write(enhanced_description)
|
163 |
+
|
164 |
+
# Generate an image based on the enhanced description
|
165 |
+
image = generate_image_from_description(enhanced_description)
|
166 |
+
|
167 |
+
# Display the generated image
|
168 |
+
st.image(image, caption="Generated Image based on News Summary")
|
169 |
+
|
170 |
+
# Generate a social media post based on the summary
|
171 |
+
social_media_post = generate_social_media_post(combined_content, tone)
|
172 |
+
|
173 |
+
st.write("### Generated Social Media Post:")
|
174 |
+
st.write(social_media_post)
|
175 |
+
|
176 |
+
# Allow user to download the post as a text file
|
177 |
+
post_filename = f"news_summary_{topic.replace(' ', '_')}.txt"
|
178 |
+
st.download_button("Download Post as Text File", data=social_media_post, file_name=post_filename)
|
179 |
+
|
180 |
+
else:
|
181 |
+
st.write("No news articles found for this topic.")
|
182 |
+
else:
|
183 |
+
st.write("Please enter a topic to search for news.")
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
main()
|