Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,21 +24,35 @@ class MultiTaskModel(nn.Module):
|
|
| 24 |
return obj_logits, bin_logits
|
| 25 |
|
| 26 |
########################################
|
| 27 |
-
# 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
########################################
|
| 29 |
# Load the saved mapping from JSON
|
| 30 |
with open("obj_label_mapping.json", "r") as f:
|
| 31 |
obj_label_to_idx = json.load(f)
|
| 32 |
-
# Use the mapping as-is; do not override it.
|
| 33 |
-
num_obj_classes = len(obj_label_to_idx)
|
| 34 |
# Create the inverse mapping
|
| 35 |
idx_to_obj_label = {v: k for k, v in obj_label_to_idx.items()}
|
| 36 |
|
| 37 |
bin_label_names = ["AI-Generated", "Real"]
|
| 38 |
|
| 39 |
-
########################################
|
| 40 |
-
# 3. Define Validation Transforms
|
| 41 |
-
########################################
|
| 42 |
val_transforms = transforms.Compose([
|
| 43 |
transforms.Resize(256),
|
| 44 |
transforms.CenterCrop(224),
|
|
@@ -48,27 +62,7 @@ val_transforms = transforms.Compose([
|
|
| 48 |
])
|
| 49 |
|
| 50 |
########################################
|
| 51 |
-
# 4.
|
| 52 |
-
########################################
|
| 53 |
-
device = torch.device("cpu")
|
| 54 |
-
|
| 55 |
-
resnet = models.resnet50(pretrained=False)
|
| 56 |
-
resnet.fc = nn.Identity()
|
| 57 |
-
feature_dim = 2048
|
| 58 |
-
|
| 59 |
-
# Build the model architecture.
|
| 60 |
-
model = MultiTaskModel(resnet, feature_dim, num_obj_classes)
|
| 61 |
-
model.to(device)
|
| 62 |
-
|
| 63 |
-
repo_id = "Abdu07/multitask-model"
|
| 64 |
-
filename = "DualSight.pth" # Ensure this checkpoint is from training with the same num_obj_classes
|
| 65 |
-
weights_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 66 |
-
state_dict = torch.load(weights_path, map_location="cpu")
|
| 67 |
-
model.load_state_dict(state_dict)
|
| 68 |
-
model.eval()
|
| 69 |
-
|
| 70 |
-
########################################
|
| 71 |
-
# 5. Define the Inference Function
|
| 72 |
########################################
|
| 73 |
def predict_image(img: Image.Image) -> str:
|
| 74 |
img = img.convert("RGB")
|
|
@@ -82,17 +76,15 @@ def predict_image(img: Image.Image) -> str:
|
|
| 82 |
return f"Prediction: {obj_name} ({bin_name})"
|
| 83 |
|
| 84 |
########################################
|
| 85 |
-
#
|
| 86 |
########################################
|
| 87 |
demo = gr.Interface(
|
| 88 |
fn=predict_image,
|
| 89 |
inputs=gr.Image(type="pil"),
|
| 90 |
outputs="text",
|
| 91 |
-
title="Multi-Task Image Classifier
|
| 92 |
description="Upload an image to receive two predictions:\n1) The primary object in the image,\n2) Whether the image is AI-generated or Real."
|
| 93 |
)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
if __name__ == "__main__":
|
| 98 |
-
demo.launch(server_name="0.0.0.0", share=True)
|
|
|
|
| 24 |
return obj_logits, bin_logits
|
| 25 |
|
| 26 |
########################################
|
| 27 |
+
# 2. Reconstruct the Model and Load Weights
|
| 28 |
+
########################################
|
| 29 |
+
num_obj_classes = 494 # Make sure this matches your training
|
| 30 |
+
device = torch.device("cpu")
|
| 31 |
+
|
| 32 |
+
resnet = models.resnet50(pretrained=False)
|
| 33 |
+
resnet.fc = nn.Identity()
|
| 34 |
+
feature_dim = 2048
|
| 35 |
+
model = MultiTaskModel(resnet, feature_dim, num_obj_classes)
|
| 36 |
+
model.to(device)
|
| 37 |
+
|
| 38 |
+
repo_id = "Abdu07/multitask-model"
|
| 39 |
+
filename = "Yolloplusclassproject_weights.pth"
|
| 40 |
+
weights_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 41 |
+
state_dict = torch.load(weights_path, map_location="cpu")
|
| 42 |
+
model.load_state_dict(state_dict)
|
| 43 |
+
model.eval()
|
| 44 |
+
|
| 45 |
+
########################################
|
| 46 |
+
# 3. Load Label Mapping and Define Transforms
|
| 47 |
########################################
|
| 48 |
# Load the saved mapping from JSON
|
| 49 |
with open("obj_label_mapping.json", "r") as f:
|
| 50 |
obj_label_to_idx = json.load(f)
|
|
|
|
|
|
|
| 51 |
# Create the inverse mapping
|
| 52 |
idx_to_obj_label = {v: k for k, v in obj_label_to_idx.items()}
|
| 53 |
|
| 54 |
bin_label_names = ["AI-Generated", "Real"]
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
val_transforms = transforms.Compose([
|
| 57 |
transforms.Resize(256),
|
| 58 |
transforms.CenterCrop(224),
|
|
|
|
| 62 |
])
|
| 63 |
|
| 64 |
########################################
|
| 65 |
+
# 4. Define the Inference Function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
########################################
|
| 67 |
def predict_image(img: Image.Image) -> str:
|
| 68 |
img = img.convert("RGB")
|
|
|
|
| 76 |
return f"Prediction: {obj_name} ({bin_name})"
|
| 77 |
|
| 78 |
########################################
|
| 79 |
+
# 5. Create Gradio UI
|
| 80 |
########################################
|
| 81 |
demo = gr.Interface(
|
| 82 |
fn=predict_image,
|
| 83 |
inputs=gr.Image(type="pil"),
|
| 84 |
outputs="text",
|
| 85 |
+
title="Multi-Task Image Classifier",
|
| 86 |
description="Upload an image to receive two predictions:\n1) The primary object in the image,\n2) Whether the image is AI-generated or Real."
|
| 87 |
)
|
| 88 |
|
|
|
|
|
|
|
| 89 |
if __name__ == "__main__":
|
| 90 |
+
demo.launch(server_name="0.0.0.0", share=True)
|