Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,21 +24,35 @@ class MultiTaskModel(nn.Module):
|
|
24 |
return obj_logits, bin_logits
|
25 |
|
26 |
########################################
|
27 |
-
# 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
########################################
|
29 |
# Load the saved mapping from JSON
|
30 |
with open("obj_label_mapping.json", "r") as f:
|
31 |
obj_label_to_idx = json.load(f)
|
32 |
-
# Use the mapping as-is; do not override it.
|
33 |
-
num_obj_classes = len(obj_label_to_idx)
|
34 |
# Create the inverse mapping
|
35 |
idx_to_obj_label = {v: k for k, v in obj_label_to_idx.items()}
|
36 |
|
37 |
bin_label_names = ["AI-Generated", "Real"]
|
38 |
|
39 |
-
########################################
|
40 |
-
# 3. Define Validation Transforms
|
41 |
-
########################################
|
42 |
val_transforms = transforms.Compose([
|
43 |
transforms.Resize(256),
|
44 |
transforms.CenterCrop(224),
|
@@ -48,27 +62,7 @@ val_transforms = transforms.Compose([
|
|
48 |
])
|
49 |
|
50 |
########################################
|
51 |
-
# 4.
|
52 |
-
########################################
|
53 |
-
device = torch.device("cpu")
|
54 |
-
|
55 |
-
resnet = models.resnet50(pretrained=False)
|
56 |
-
resnet.fc = nn.Identity()
|
57 |
-
feature_dim = 2048
|
58 |
-
|
59 |
-
# Build the model architecture.
|
60 |
-
model = MultiTaskModel(resnet, feature_dim, num_obj_classes)
|
61 |
-
model.to(device)
|
62 |
-
|
63 |
-
repo_id = "Abdu07/multitask-model"
|
64 |
-
filename = "DualSight.pth" # Ensure this checkpoint is from training with the same num_obj_classes
|
65 |
-
weights_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
66 |
-
state_dict = torch.load(weights_path, map_location="cpu")
|
67 |
-
model.load_state_dict(state_dict)
|
68 |
-
model.eval()
|
69 |
-
|
70 |
-
########################################
|
71 |
-
# 5. Define the Inference Function
|
72 |
########################################
|
73 |
def predict_image(img: Image.Image) -> str:
|
74 |
img = img.convert("RGB")
|
@@ -82,17 +76,15 @@ def predict_image(img: Image.Image) -> str:
|
|
82 |
return f"Prediction: {obj_name} ({bin_name})"
|
83 |
|
84 |
########################################
|
85 |
-
#
|
86 |
########################################
|
87 |
demo = gr.Interface(
|
88 |
fn=predict_image,
|
89 |
inputs=gr.Image(type="pil"),
|
90 |
outputs="text",
|
91 |
-
title="Multi-Task Image Classifier
|
92 |
description="Upload an image to receive two predictions:\n1) The primary object in the image,\n2) Whether the image is AI-generated or Real."
|
93 |
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
if __name__ == "__main__":
|
98 |
-
demo.launch(server_name="0.0.0.0", share=True)
|
|
|
24 |
return obj_logits, bin_logits
|
25 |
|
26 |
########################################
|
27 |
+
# 2. Reconstruct the Model and Load Weights
|
28 |
+
########################################
|
29 |
+
num_obj_classes = 494 # Make sure this matches your training
|
30 |
+
device = torch.device("cpu")
|
31 |
+
|
32 |
+
resnet = models.resnet50(pretrained=False)
|
33 |
+
resnet.fc = nn.Identity()
|
34 |
+
feature_dim = 2048
|
35 |
+
model = MultiTaskModel(resnet, feature_dim, num_obj_classes)
|
36 |
+
model.to(device)
|
37 |
+
|
38 |
+
repo_id = "Abdu07/multitask-model"
|
39 |
+
filename = "Yolloplusclassproject_weights.pth"
|
40 |
+
weights_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
41 |
+
state_dict = torch.load(weights_path, map_location="cpu")
|
42 |
+
model.load_state_dict(state_dict)
|
43 |
+
model.eval()
|
44 |
+
|
45 |
+
########################################
|
46 |
+
# 3. Load Label Mapping and Define Transforms
|
47 |
########################################
|
48 |
# Load the saved mapping from JSON
|
49 |
with open("obj_label_mapping.json", "r") as f:
|
50 |
obj_label_to_idx = json.load(f)
|
|
|
|
|
51 |
# Create the inverse mapping
|
52 |
idx_to_obj_label = {v: k for k, v in obj_label_to_idx.items()}
|
53 |
|
54 |
bin_label_names = ["AI-Generated", "Real"]
|
55 |
|
|
|
|
|
|
|
56 |
val_transforms = transforms.Compose([
|
57 |
transforms.Resize(256),
|
58 |
transforms.CenterCrop(224),
|
|
|
62 |
])
|
63 |
|
64 |
########################################
|
65 |
+
# 4. Define the Inference Function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
########################################
|
67 |
def predict_image(img: Image.Image) -> str:
|
68 |
img = img.convert("RGB")
|
|
|
76 |
return f"Prediction: {obj_name} ({bin_name})"
|
77 |
|
78 |
########################################
|
79 |
+
# 5. Create Gradio UI
|
80 |
########################################
|
81 |
demo = gr.Interface(
|
82 |
fn=predict_image,
|
83 |
inputs=gr.Image(type="pil"),
|
84 |
outputs="text",
|
85 |
+
title="Multi-Task Image Classifier",
|
86 |
description="Upload an image to receive two predictions:\n1) The primary object in the image,\n2) Whether the image is AI-generated or Real."
|
87 |
)
|
88 |
|
|
|
|
|
89 |
if __name__ == "__main__":
|
90 |
+
demo.launch(server_name="0.0.0.0", share=True)
|