Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn as nn | |
from torchvision import transforms | |
from PIL import Image | |
import requests | |
from huggingface_hub import hf_hub_download | |
######################## | |
# 1) Download & Load Model | |
######################## | |
# Replace with your actual model repo on HF | |
repo_id = "Abdu07/multitask-model" | |
filename = "multitask_model.pth" | |
# Download the model file from the Hub | |
model_path = hf_hub_download(repo_id=repo_id, filename=filename) | |
model = torch.load(model_path, map_location="cpu") # or map_location="cuda" if you prefer | |
model.eval() | |
######################## | |
# 2) Define Label Mappings | |
######################## | |
# For example, if your object labels are saved in code: | |
idx_to_obj_label = { | |
0: "cat", | |
1: "dog", | |
2: "car", | |
# ... fill in all your categories ... | |
} | |
bin_label_names = ["AI-Generated", "Real"] # Adjust if 0=AI, 1=Real | |
######################## | |
# 3) Define Transforms | |
######################## | |
# Match the transforms you used during validation | |
val_transforms = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
]) | |
######################## | |
# 4) Define the Inference Function | |
######################## | |
def predict_image(img: Image.Image) -> str: | |
""" | |
Takes a PIL image, applies transforms, passes through the model, | |
and returns the combined prediction (object + AI/Real). | |
""" | |
# Convert to RGB just in case | |
img = img.convert("RGB") | |
# Apply transforms | |
img_t = val_transforms(img) | |
# Add batch dimension | |
img_t = img_t.unsqueeze(0) | |
with torch.no_grad(): | |
obj_logits, bin_logits = model(img_t) | |
obj_pred = torch.argmax(obj_logits, dim=1).item() | |
bin_pred = torch.argmax(bin_logits, dim=1).item() | |
# Map predictions to labels | |
obj_name = idx_to_obj_label.get(obj_pred, "Unknown") | |
bin_name = bin_label_names[bin_pred] | |
return f"Object: {obj_name} | Authenticity: {bin_name}" | |
######################## | |
# 5) Build Gradio UI | |
######################## | |
demo = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Multi-Task Image Classifier", | |
description=( | |
"Upload an image to get two predictions: " | |
"1) The primary object (from pseudo-labeling), " | |
"2) Whether the image is AI-generated or real." | |
) | |
) | |
######################## | |
# 6) Launch the App | |
######################## | |
def main(): | |
demo.launch(server_name="0.0.0.0", enable_queue=True) | |
if __name__ == "__main__": | |
main() | |