AuraClima / streamlit_app.py
AbdullahImran's picture
resolved model 3 scale issues
091a7e7
raw
history blame
21.6 kB
import streamlit as st
import tensorflow as tf
import joblib
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import pickle
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
# Dark theme configuration
st.set_page_config(
page_title="AuraClima - AI Climate Intelligence",
page_icon="🌍",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for dark theme and styling
st.markdown("""
<style>
.stApp {
background: linear-gradient(135deg, #0c1017 0%, #1a1f2e 100%);
color: #ffffff;
}
.main-header {
text-align: center;
background: linear-gradient(135deg, #1f77b4, #FF7F0E);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 3.5rem;
font-weight: 800;
margin-bottom: 1rem;
text-shadow: 0 0 30px rgba(31, 119, 180, 0.3);
}
.subtitle {
text-align: center;
color: #FF7F0E;
font-size: 1.5rem;
font-style: italic;
margin-bottom: 2rem;
text-shadow: 0 0 20px rgba(255, 127, 14, 0.2);
}
.model-card {
background: linear-gradient(145deg, #1e2530, #2a3441);
border-radius: 15px;
padding: 20px;
margin: 15px 0;
border: 1px solid rgba(31, 119, 180, 0.3);
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
backdrop-filter: blur(10px);
}
.metric-container {
background: linear-gradient(135deg, #1f77b4, #2a9fd6);
border-radius: 12px;
padding: 15px;
text-align: center;
margin: 10px 0;
box-shadow: 0 4px 20px rgba(31, 119, 180, 0.4);
}
.metric-value {
font-size: 2rem;
font-weight: bold;
color: #ffffff;
}
.metric-label {
color: #e0e6ed;
font-size: 0.9rem;
margin-top: 5px;
}
.ai-badge {
background: linear-gradient(45deg, #FF7F0E, #ff9a3c);
color: white;
padding: 5px 15px;
border-radius: 20px;
font-size: 0.8rem;
font-weight: bold;
display: inline-block;
margin: 5px;
box-shadow: 0 2px 10px rgba(255, 127, 14, 0.3);
}
.sidebar .sidebar-content {
background: linear-gradient(180deg, #1a1f2e, #0c1017);
}
.stSelectbox > div > div {
background-color: #2a3441;
border: 1px solid #1f77b4;
border-radius: 8px;
}
.stSlider > div > div {
background: linear-gradient(90deg, #1f77b4, #FF7F0E);
}
.stButton > button {
background: linear-gradient(135deg, #1f77b4, #FF7F0E);
color: white;
border: none;
border-radius: 8px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 20px rgba(31, 119, 180, 0.4);
}
.forecast-section {
background: rgba(31, 119, 180, 0.1);
border-radius: 15px;
padding: 20px;
margin: 20px 0;
border-left: 4px solid #1f77b4;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_all():
base = os.path.dirname(__file__)
models_dir = os.path.join(base, "models")
data_dir = os.path.join(base, "data")
# Load models
model1 = tf.keras.models.load_model(os.path.join(models_dir, "model1.keras"))
model2 = tf.keras.models.load_model(os.path.join(models_dir, "model2.keras"))
model3 = tf.keras.models.load_model(os.path.join(models_dir, "model3.keras"))
# Load scalers
scaler1 = joblib.load(os.path.join(models_dir, "scaler1.save"))
scalerX2 = joblib.load(os.path.join(models_dir, "scalerX2.save"))
scalerY2 = joblib.load(os.path.join(models_dir, "scalerY2.save"))
scaler3 = joblib.load(os.path.join(models_dir, "scaler3.save"))
# Load feature columns list for model2
with open(os.path.join(models_dir, "feature_cols2.list"), "rb") as f:
feature_cols2 = pickle.load(f)
# Load CSV data if present
df_agri = None
agri_path = os.path.join(data_dir, "Agrofood_co2_emission.csv")
if os.path.exists(agri_path):
df_agri = pd.read_csv(agri_path)
df_co2 = None
co2_path = os.path.join(data_dir, "CO2_Emissions_1960-2018.csv")
if os.path.exists(co2_path):
df_co2 = pd.read_csv(co2_path)
if 'Country Name' not in df_co2.columns:
st.error(f"Expected 'Country Name' in CO2 CSV, found: {df_co2.columns.tolist()}")
df_co2 = None
else:
dummies = pd.get_dummies(df_co2['Country Name'], prefix='Country')
country_features = dummies.columns.tolist()
df_co2 = pd.concat([df_co2, dummies], axis=1)
else:
country_features = None
return {
"model1": model1, "model2": model2, "model3": model3,
"scaler1": scaler1, "scalerX2": scalerX2, "scalerY2": scalerY2, "scaler3": scaler3, # <--- Ensure scaler3 is returned
"feature_cols2": feature_cols2, "df_agri": df_agri, "df_co2": df_co2,
"country_features": country_features,
}
def forecast_model1(model, scaler, recent_values):
arr = np.array(recent_values).reshape(-1, 1)
scaled = scaler.transform(arr).flatten()
inp = scaled.reshape((1, len(scaled), 1))
scaled_pred = model.predict(inp, verbose=0)[0, 0]
pred = scaler.inverse_transform([[scaled_pred]])[0, 0]
return pred
def predict_model2(model, scalerX, scalerY, feature_array):
X = np.array(feature_array).reshape(1, -1)
Xs = scalerX.transform(X)
ys = model.predict(Xs, verbose=0)
ypred = scalerY.inverse_transform(ys.reshape(-1, 1)).flatten()[0]
return ypred
def forecast_model3(model, scaler, recent_series, country_vec):
window = len(recent_series)
# co2_scaled = scaler.transform(np.array(recent_series).reshape(-1, 1)).flatten()
co2_col = np.array(recent_series).reshape(window, 1)
country_mat = np.tile(country_vec.reshape(1, -1), (window, 1))
# Concatenate raw CO2 values with country vector
seq = np.concatenate([co2_col, country_mat], axis=1)
# Reshape input for LSTM
inp = seq.reshape(1, window, seq.shape[1])
# Make prediction - model outputs raw, unscaled values
ypred_raw_output = model.predict(inp, verbose=0).flatten()
# --- PREVIOUSLY INCORRECT INVERSE TRANSFORM REMOVED ---
# ypred = scaler.inverse_transform(ypred_scaled.reshape(-1, 1)).flatten()
# The model's output is already the final, unscaled prediction
ypred = ypred_raw_output
return ypred
def create_animated_metric(label, value, icon="🎯"):
st.markdown(f"""
<div class="metric-container">
<div style="font-size: 1.2rem;">{icon}</div>
<div class="metric-value">{value}</div>
<div class="metric-label">{label}</div>
</div>
""", unsafe_allow_html=True)
def sidebar_nav():
st.sidebar.markdown("""
<div style="text-align: center; padding: 20px;">
<div style="font-size: 4rem;">🌍</div>
<h1 style="color: #1f77b4; margin: 10px 0;">AuraClima</h1>
<p style="color: #FF7F0E; font-style: italic; margin-bottom: 20px;">
"See the unseen, act on the future"
</p>
<div class="ai-badge">🤖 AI-Powered</div>
<div class="ai-badge">⚡ Real-time</div>
</div>
""", unsafe_allow_html=True)
st.sidebar.markdown("---")
page = st.sidebar.radio("🚀 Navigate", ["🏠 Home", "🌍 Climate Intelligence", "ℹ️ About"],
label_visibility="collapsed")
return page
def home_page():
# Centered title
st.markdown('<h1 class="main-header">🌍 AuraClima</h1>', unsafe_allow_html=True)
# AI Features showcase
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("""
<div class="model-card">
<div style="text-align: center;">
<div style="font-size: 3rem; margin-bottom: 10px;">🌱</div>
<h3 style="color: #1f77b4;">Agricultural AI</h3>
<p style="color: #e0e6ed;">LSTM Time Series Forecasting</p>
<div class="ai-badge">Neural Network</div>
</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown("""
<div class="model-card">
<div style="text-align: center;">
<div style="font-size: 3rem; margin-bottom: 10px;">📊</div>
<h3 style="color: #FF7F0E;">Feature Analysis</h3>
<p style="color: #e0e6ed;">Multi-variate Regression</p>
<div class="ai-badge">Deep Learning</div>
</div>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown("""
<div class="model-card">
<div style="text-align: center;">
<div style="font-size: 3rem; margin-bottom: 10px;">💨</div>
<h3 style="color: #1f77b4;">CO₂ Intelligence</h3>
<p style="color: #e0e6ed;">Sequence-to-Sequence</p>
<div class="ai-badge">Advanced LSTM</div>
</div>
</div>
""", unsafe_allow_html=True)
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 30px;">
<h3 style="color: #1f77b4;">🚀 Advanced AI Climate Modeling</h3>
<p style="color: #e0e6ed; font-size: 1.1rem; max-width: 600px; margin: 0 auto;">
Leverage cutting-edge machine learning to forecast climate patterns, emissions, and environmental trends.
Our AI models process complex data to provide actionable insights for a sustainable future.
</p>
</div>
""", unsafe_allow_html=True)
def create_enhanced_plot(hist_years, series_co2, fut_years, pred3, country):
# Create subplot with secondary y-axis for better visualization
fig = make_subplots(
rows=1, cols=1,
subplot_titles=[f"🌍 AI Climate Intelligence: {country}"],
specs=[[{"secondary_y": False}]]
)
# Historical data
fig.add_trace(
go.Scatter(
x=hist_years,
y=series_co2,
mode='lines+markers',
name='Historical Emissions',
line=dict(color='#1f77b4', width=3),
marker=dict(size=6, color='#1f77b4'),
hovertemplate='<b>Year:</b> %{x}<br><b>CO₂:</b> %{y:.2f}<extra></extra>'
)
)
# Forecast data
fig.add_trace(
go.Scatter(
x=fut_years,
y=pred3,
mode='lines+markers',
name='AI Forecast',
line=dict(color='#FF7F0E', width=4, dash='dash'),
marker=dict(size=8, color='#FF7F0E', symbol='diamond'),
hovertemplate='<b>Year:</b> %{x}<br><b>Predicted CO₂:</b> %{y:.2f}<extra></extra>'
)
)
# Connection line
fig.add_trace(
go.Scatter(
x=[hist_years[-1], fut_years[0]],
y=[series_co2[-1], pred3[0]],
mode='lines',
name='Transition',
line=dict(color='#2ca02c', width=2, dash='dot'),
showlegend=False
)
)
# Update layout with dark theme
fig.update_layout(
title=dict(
text=f"<b>CO₂ Emissions Forecast for {country}</b>",
x=0.5,
font=dict(size=18, color='white')
),
xaxis_title="Year",
yaxis_title="CO₂ Emissions",
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font=dict(color='white'),
legend=dict(
bgcolor='rgba(30, 37, 48, 0.8)',
bordercolor='#1f77b4',
borderwidth=1
),
hovermode='x unified'
)
# Update axes
fig.update_xaxes(
gridcolor='rgba(31, 119, 180, 0.2)',
griddash='dash',
showgrid=True
)
fig.update_yaxes(
gridcolor='rgba(31, 119, 180, 0.2)',
griddash='dash',
showgrid=True
)
return fig
def forecast_by_country(data):
st.markdown('<h2 style="color: #1f77b4; text-align: center;">🌍 Climate Intelligence Dashboard</h2>',
unsafe_allow_html=True)
model1, scaler1 = data["model1"], data["scaler1"]
model2, scalerX2, scalerY2, feature_cols2 = data["model2"], data["scalerX2"], data["scalerY2"], data[
"feature_cols2"]
model3, scaler3 = data["model3"], data["scaler3"]
df_agri, df_co2 = data["df_agri"], data["df_co2"]
if df_agri is None:
st.error("🚨 Agricultural dataset not found. Climate Intelligence unavailable.")
return
countries = sorted(df_agri['Area'].dropna().unique())
# Enhanced country selector
st.markdown("""
<div style="text-align: center; margin: 20px 0;">
<h4 style="color: #FF7F0E;">🎯 Select Country for AI Analysis</h4>
</div>
""", unsafe_allow_html=True)
country = st.selectbox("", countries, label_visibility="collapsed")
if not country:
return
df_ct = df_agri[df_agri['Area'] == country].sort_values('Year')
latest_year = int(df_ct['Year'].max())
# Create three columns for models
st.markdown("---")
st.markdown('<h3 style="color: #1f77b4; text-align: center;">🤖 AI Model Predictions</h3>', unsafe_allow_html=True)
col1, col2, col3 = st.columns(3)
# Model 1 - LSTM Forecast
with col1:
st.markdown("""
<div class="forecast-section">
<h4 style="color: #1f77b4;">🌱 LSTM Time Series</h4>
<p style="color: #e0e6ed; font-size: 0.9rem;">Neural network analyzing temporal patterns</p>
</div>
""", unsafe_allow_html=True)
inp1 = model1.input_shape
window1 = inp1[1]
series1 = df_ct.set_index('Year')['total_emission']
years1 = sorted(series1.index)
if len(years1) >= window1:
recent_vals = series1.loc[years1[-window1:]].values
with st.spinner("🔄 AI Processing..."):
pred1 = forecast_model1(model1, scaler1, recent_vals)
create_animated_metric("Next Year Emission", f"{pred1:.2f}", "🌱")
else:
st.info(f"⚠️ Need ≥{window1} years of data")
# Model 2 - Feature Analysis
with col2:
st.markdown("""
<div class="forecast-section">
<h4 style="color: #FF7F0E;">📊 Feature Analysis</h4>
<p style="color: #e0e6ed; font-size: 0.9rem;">Multi-variate regression modeling</p>
</div>
""", unsafe_allow_html=True)
row_latest = df_ct[df_ct['Year'] == latest_year].iloc[0]
feature_array = []
for col in feature_cols2:
if col.startswith("Area_"):
feature_array.append(1.0 if col == f"Area_{country}" else 0.0)
else:
val = row_latest.get(col, 0.0)
feature_array.append(float(val))
try:
with st.spinner("🔄 Analyzing features..."):
pred2 = predict_model2(model2, scalerX2, scalerY2, feature_array)
create_animated_metric("Feature Prediction", f"{pred2:.2f}", "📊")
except Exception as e:
st.error(f"❌ Model error: {e}")
# Model 3 - CO2 Intelligence
with col3:
st.markdown("""
<div class="forecast-section">
<h4 style="color: #1f77b4;">💨 CO₂ Intelligence</h4>
<p style="color: #e0e6ed; font-size: 0.9rem;">Advanced sequence modeling</p>
</div>
""", unsafe_allow_html=True)
if df_co2 is not None:
dfc = df_co2[df_co2['Country Name'] == country]
country_features = data["country_features"]
country_vec = np.zeros(len(country_features))
for i, name in enumerate(country_features):
if name == f"Country_{country}":
country_vec[i] = 1
break
if not dfc.empty:
year_cols = [c for c in dfc.columns if c.isdigit()]
series_co2 = dfc.iloc[0][year_cols].astype(float).values
inp3 = model3.input_shape
window3 = inp3[1]
if len(series_co2) >= window3:
recent3 = series_co2[-window3:]
with st.spinner("🔄 CO₂ forecasting..."):
pred3 = forecast_model3(model3, scaler3, recent3, country_vec)
avg_forecast = np.mean(pred3)
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨")
else:
st.info(f"⚠️ Need ≥{window3} years")
else:
st.error("❌ CO₂ data unavailable")
# Interactive Parameter Tuning
st.markdown("---")
st.markdown('<h3 style="color: #FF7F0E; text-align: center;">⚙️ Interactive Parameter Tuning</h3>',
unsafe_allow_html=True)
with st.expander("🎛️ Adjust Model Parameters", expanded=False):
st.markdown("**Modify features to explore different scenarios:**")
tweaked = []
cols_numeric = [c for c in feature_cols2 if not c.startswith("Area_")]
cols = st.columns(2)
for i, col in enumerate(feature_cols2):
if col.startswith("Area_"):
tweaked.append(feature_array[i])
else:
series_col = df_agri[col].dropna().astype(float)
if not series_col.empty:
mn, mx = float(series_col.min()), float(series_col.max())
default = feature_array[i]
slider_val = cols[i % 2].slider(f"🔧 {col}", mn, mx, default, key=f"slider_{col}")
tweaked.append(slider_val)
else:
tweaked.append(feature_array[i])
if st.button("🚀 Run Enhanced Prediction"):
try:
with st.spinner("🤖 AI recalculating..."):
pred2b = predict_model2(model2, scalerX2, scalerY2, tweaked)
create_animated_metric("Adjusted Prediction", f"{pred2b:.2f}", "🎯")
except Exception as e:
st.error(f"❌ Error: {e}")
# Enhanced CO2 Visualization
if df_co2 is not None and not dfc.empty and len(series_co2) >= window3:
st.markdown("---")
st.markdown('<h3 style="color: #1f77b4; text-align: center;">📈 Advanced CO₂ Visualization</h3>',
unsafe_allow_html=True)
hist_years = list(map(int, year_cols))
last_year = hist_years[-1]
fut_years = [last_year + i + 1 for i in range(len(pred3))]
# Create enhanced interactive plot
fig = create_enhanced_plot(hist_years, series_co2, fut_years, pred3, country)
st.plotly_chart(fig, use_container_width=True)
# Forecast summary table
st.markdown('<h4 style="color: #FF7F0E;">📋 Detailed Forecast Summary</h4>', unsafe_allow_html=True)
forecast_df = pd.DataFrame({
'🗓️ Year': fut_years,
'💨 Predicted CO₂': [f"{val:.2f}" for val in pred3],
'📈 Trend': ['↗️' if i == 0 or pred3[i] > pred3[i - 1] else '↘️' for i in range(len(pred3))]
})
st.dataframe(forecast_df, use_container_width=True)
def about_page():
st.markdown('<h1 class="main-header">🌍 AuraClima</h1>', unsafe_allow_html=True)
st.markdown('<p class="subtitle">Advanced AI Climate Intelligence Platform</p>', unsafe_allow_html=True)
st.markdown("""
<div class="model-card">
<h3 style="color: #1f77b4;">🎯 Mission</h3>
<p style="color: #e0e6ed;">
AuraClima leverages cutting-edge artificial intelligence to forecast climate patterns and emissions,
empowering decision-makers to "See the unseen, act on the future."
</p>
</div>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("""
<div class="model-card">
<h4 style="color: #FF7F0E;">🤖 Technology Stack</h4>
<div class="ai-badge">TensorFlow</div>
<div class="ai-badge">LSTM Networks</div>
<div class="ai-badge">Neural Networks</div>
<div class="ai-badge">Time Series</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown("""
<div class="model-card">
<h4 style="color: #1f77b4;">🎨 Brand Identity</h4>
<p style="color: #e0e6ed;">
<strong>Primary:</strong> <span style="color: #1f77b4;">Blue (#1f77b4)</span><br>
<strong>Secondary:</strong> <span style="color: #FF7F0E;">Orange (#FF7F0E)</span>
</p>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style="text-align: center; margin-top: 30px;">
<p style="color: #e0e6ed;">
<strong>Developed by:</strong> Abdullah Imran<br>
<strong>Contact:</strong> [email protected]
</p>
</div>
""", unsafe_allow_html=True)
# Main Application
def main():
# Load resources once
data = load_all()
# Sidebar navigation
page = sidebar_nav()
# Page routing
if page == "🏠 Home":
home_page()
elif page == "🌍 Climate Intelligence":
forecast_by_country(data)
elif page == "ℹ️ About":
about_page()
if __name__ == "__main__":
main()