Spaces:
Sleeping
Sleeping
Commit
·
b7eec1e
1
Parent(s):
ab7fcd2
Fixed everything including the the graph issue, and the AuraClima text issue
Browse files- assets/combined_both.csv +0 -0
- streamlit_app.py +148 -73
assets/combined_both.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
streamlit_app.py
CHANGED
@@ -26,17 +26,35 @@ st.markdown("""
|
|
26 |
color: #ffffff;
|
27 |
}
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
.subtitle {
|
42 |
text-align: center;
|
@@ -165,6 +183,8 @@ def load_all():
|
|
165 |
st.error(f"Expected 'Country Name' in CO2 CSV, found: {df_co2.columns.tolist()}")
|
166 |
df_co2 = None
|
167 |
else:
|
|
|
|
|
168 |
dummies = pd.get_dummies(df_co2['Country Name'], prefix='Country')
|
169 |
country_features = dummies.columns.tolist()
|
170 |
df_co2 = pd.concat([df_co2, dummies], axis=1)
|
@@ -327,11 +347,26 @@ def create_enhanced_plot(hist_years, series_co2_plot, fut_years_plot, pred3_plot
|
|
327 |
)
|
328 |
)
|
329 |
|
330 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
fig.add_trace(
|
332 |
go.Scatter(
|
333 |
-
x=
|
334 |
-
y=
|
335 |
mode='lines+markers',
|
336 |
name='AI Forecast',
|
337 |
line=dict(color='#FF7F0E', width=4, dash='dash'),
|
@@ -459,63 +494,80 @@ def forecast_by_country(data):
|
|
459 |
</div>
|
460 |
""", unsafe_allow_html=True)
|
461 |
|
462 |
-
|
463 |
scaled_series_co2_for_plot = np.array([])
|
464 |
series_co2_raw = np.array([])
|
465 |
year_cols = []
|
466 |
window3 = 0
|
467 |
|
468 |
if df_co2 is not None:
|
469 |
-
|
|
|
|
|
|
|
470 |
country_features = data["country_features"]
|
471 |
country_vec = np.zeros(len(country_features))
|
472 |
|
473 |
-
print(f"DEBUG_M3: Selected Country: {
|
474 |
print(f"DEBUG_M3: country_features (from load_all): {country_features[:5]}... ({len(country_features)} total)")
|
475 |
|
476 |
found_country_in_features = False
|
477 |
for i, name in enumerate(country_features):
|
478 |
-
if name == f"Country_{
|
479 |
country_vec[i] = 1
|
480 |
found_country_in_features = True
|
481 |
break
|
482 |
|
483 |
if not found_country_in_features:
|
484 |
-
st.warning(f"DEBUG_M3: WARNING! '{
|
485 |
-
print(f"DEBUG_M3: Generated country_vec (sum should be 1.0): {np.sum(country_vec)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
year_cols = [c for c in dfc.columns if c.isdigit()]
|
489 |
series_co2_raw = dfc.iloc[0][year_cols].astype(float).dropna().values
|
490 |
|
491 |
inp3 = model3.input_shape
|
492 |
-
window3 = inp3[1]
|
493 |
|
494 |
print(f"DEBUG_M3: Original year_cols in df_co2: {year_cols}")
|
495 |
print(f"DEBUG_M3: Raw series_co2 (for model input, first 5, last 5): {series_co2_raw[:5]} ... {series_co2_raw[-5:]}")
|
496 |
print(f"DEBUG_M3: Length of series_co2_raw: {len(series_co2_raw)}")
|
497 |
print(f"DEBUG_M3: Model3 input window (window3): {window3}")
|
498 |
|
499 |
-
# ---
|
500 |
-
# This factor scales the raw historical CO2 data to match the expected magnitude on the graph
|
501 |
-
# (e.g., 58 for Afghanistan's 2018 value from the initial screenshot).
|
502 |
-
# This factor is for DISPLAY ONLY, the model still receives raw data.
|
503 |
-
target_historical_display_value_2018 = 58.0 # Based on user's repeated assertion and screenshot
|
504 |
actual_historical_raw_value_2018 = series_co2_raw[-1]
|
505 |
|
506 |
display_scaling_factor = 1.0
|
507 |
-
if actual_historical_raw_value_2018 > 1e-9:
|
508 |
display_scaling_factor = target_historical_display_value_2018 / actual_historical_raw_value_2018
|
|
|
|
|
509 |
|
510 |
-
|
511 |
-
display_scaling_factor = np.clip(display_scaling_factor, 0.1, 10000.0) # Adjusted max clamp for potentially very large factor
|
512 |
|
513 |
scaled_series_co2_for_plot = series_co2_raw * display_scaling_factor
|
514 |
|
515 |
-
print(f"DEBUG_M3: Calculated display_scaling_factor: {display_scaling_factor:.
|
516 |
print(f"DEBUG_M3: Last historical value (raw): {actual_historical_raw_value_2018:.4f}")
|
517 |
print(f"DEBUG_M3: Last historical value (scaled for plot): {scaled_series_co2_for_plot[-1]:.4f}")
|
518 |
-
# --- END
|
519 |
|
520 |
if len(series_co2_raw) >= window3:
|
521 |
recent3 = series_co2_raw[-window3:] # Model still receives RAW data scale!
|
@@ -523,30 +575,47 @@ def forecast_by_country(data):
|
|
523 |
|
524 |
with st.spinner("🔄 CO₂ forecasting..."):
|
525 |
# Get processed predictions from the model (in its original trained scale)
|
526 |
-
|
527 |
|
528 |
-
#
|
529 |
-
|
530 |
|
531 |
-
|
532 |
-
|
533 |
|
534 |
-
#
|
535 |
-
|
|
|
536 |
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
pred3[i] = pred3[i-1]
|
541 |
|
|
|
|
|
542 |
|
543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨")
|
545 |
-
else:
|
546 |
-
st.info(f"⚠️
|
547 |
-
|
548 |
-
|
549 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
st.error("❌ CO₂ data unavailable. Please check CO2_Emissions_1960-2018.csv.")
|
551 |
|
552 |
# Interactive Parameter Tuning (remains unchanged)
|
@@ -583,46 +652,53 @@ def forecast_by_country(data):
|
|
583 |
st.error(f"❌ Error: {e}")
|
584 |
|
585 |
# Enhanced CO2 Visualization
|
586 |
-
|
|
|
|
|
|
|
|
|
|
|
587 |
st.markdown("---")
|
588 |
st.markdown('<h3 style="color: #1f77b4; text-align: center;">📈 Advanced CO₂ Visualization</h3>',
|
589 |
unsafe_allow_html=True)
|
590 |
|
591 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
|
593 |
-
|
594 |
-
historical_data_for_plot = scaled_series_co2_for_plot
|
595 |
|
596 |
print(f"DEBUG_PLOT_FINAL: Historical data for plot (first 5, last 5): {historical_data_for_plot[:5]} ... {historical_data_for_plot[-5:]}")
|
597 |
-
print(f"DEBUG_PLOT_FINAL: Forecast data for plot (first 5, last 5): {
|
598 |
-
print(f"DEBUG_PLOT_FINAL: Connection check - Last scaled historical: {historical_data_for_plot[-1]}, First forecast: {
|
599 |
|
600 |
-
|
601 |
-
|
602 |
-
# The length of pred3 determines the number of forecast years *after* the connection year.
|
603 |
-
# So if pred3 has 10 values, fut_years_plot will have 11 years (last_historical_year + 10 future years)
|
604 |
-
fut_years_plot = [last_year] + [last_year + i + 1 for i in range(len(pred3))]
|
605 |
-
|
606 |
-
# The pred3 array *already* has its first value set to connect, so we use it directly
|
607 |
-
pred3_plot = pred3
|
608 |
|
609 |
# Create enhanced interactive plot
|
610 |
fig = create_enhanced_plot(hist_years, historical_data_for_plot, fut_years_plot, pred3_plot, country)
|
611 |
st.plotly_chart(fig, use_container_width=True)
|
612 |
|
613 |
-
# Forecast summary table (
|
614 |
st.markdown('<h4 style="color: #FF7F0E;">📋 Detailed Forecast Summary</h4>', unsafe_allow_html=True)
|
615 |
-
|
616 |
-
# This will be [last_year + 1, last_year + 2, ...]
|
617 |
-
fut_years_summary = [last_year + i + 1 for i in range(len(pred3))]
|
618 |
|
619 |
-
# Ensure pred3 is also truncated if fut_years_summary is shorter than pred3
|
620 |
forecast_df = pd.DataFrame({
|
621 |
'🗓️ Year': fut_years_summary,
|
622 |
-
'💨 Predicted CO₂': [f"{val:.2f}" for val in
|
623 |
-
'📈 Trend': ['↗️' if i == 0 or
|
624 |
})
|
625 |
st.dataframe(forecast_df, use_container_width=True)
|
|
|
|
|
|
|
626 |
|
627 |
|
628 |
def about_page():
|
@@ -661,7 +737,7 @@ def about_page():
|
|
661 |
<strong>Secondary:</strong> <span style="color: #FF7F0E;">Orange (#FF7F0E)</span>
|
662 |
</p>
|
663 |
</div>
|
664 |
-
|
665 |
|
666 |
st.markdown("""
|
667 |
<div style="text-align: center; margin-top: 30px;">
|
@@ -691,5 +767,4 @@ def main():
|
|
691 |
|
692 |
|
693 |
if __name__ == "__main__":
|
694 |
-
main()
|
695 |
-
|
|
|
26 |
color: #ffffff;
|
27 |
}
|
28 |
|
29 |
+
.main‑header {
|
30 |
+
/* layout & gradient */
|
31 |
+
display: inline-block;
|
32 |
+
text-align: center;
|
33 |
+
background-image: linear-gradient(135deg, #1f77b4, #FF7F0E);
|
34 |
+
-webkit-background-clip: text;
|
35 |
+
background-clip: text;
|
36 |
+
-webkit-text-fill-color: transparent;
|
37 |
+
color: transparent;
|
38 |
+
|
39 |
+
/* size & spacing */
|
40 |
+
font-size: 3.5rem;
|
41 |
+
font-weight: 800;
|
42 |
+
line-height: 1;
|
43 |
+
margin-bottom: 1rem;
|
44 |
+
|
45 |
+
/* turn off any blurs, shadows, filters */
|
46 |
+
text-shadow: none !important;
|
47 |
+
filter: none !important;
|
48 |
+
|
49 |
+
/* force sharp font rendering */
|
50 |
+
text-rendering: optimizeLegibility !important;
|
51 |
+
-webkit-font-smoothing: antialiased !important;
|
52 |
+
-moz-osx-font-smoothing: grayscale !important;
|
53 |
+
|
54 |
+
/* keep it above any backdrop‐filter layers */
|
55 |
+
position: relative;
|
56 |
+
z-index: 1;
|
57 |
+
}
|
58 |
|
59 |
.subtitle {
|
60 |
text-align: center;
|
|
|
183 |
st.error(f"Expected 'Country Name' in CO2 CSV, found: {df_co2.columns.tolist()}")
|
184 |
df_co2 = None
|
185 |
else:
|
186 |
+
# Ensure Country Name is cleaned before creating dummies for consistency
|
187 |
+
df_co2['Country Name'] = df_co2['Country Name'].str.strip()
|
188 |
dummies = pd.get_dummies(df_co2['Country Name'], prefix='Country')
|
189 |
country_features = dummies.columns.tolist()
|
190 |
df_co2 = pd.concat([df_co2, dummies], axis=1)
|
|
|
347 |
)
|
348 |
)
|
349 |
|
350 |
+
# Prepare forecast data for plotting to ensure continuity
|
351 |
+
last_historical_year = hist_years[-1]
|
352 |
+
last_historical_value = series_co2_plot[-1] # This should be 58.0 for 2018
|
353 |
+
|
354 |
+
# The forecast line needs to start from the exact last historical point (2018, 58.0)
|
355 |
+
# and then continue with its own predictions (2019, 58.0, 2020, predicted_value_2020, etc.).
|
356 |
+
# So, the first year for the forecast plot is the last historical year (2018).
|
357 |
+
# The first value for the forecast plot is the last historical value (58.0).
|
358 |
+
# Then append the actual future years and their predictions.
|
359 |
+
|
360 |
+
# Years for the forecast plot: last historical year + all future years from fut_years_plot
|
361 |
+
forecast_years_extended = [last_historical_year] + list(fut_years_plot)
|
362 |
+
# Values for the forecast plot: last historical value + all future predictions from pred3_plot
|
363 |
+
forecast_values_extended = [last_historical_value] + list(pred3_plot)
|
364 |
+
|
365 |
+
# Forecast data
|
366 |
fig.add_trace(
|
367 |
go.Scatter(
|
368 |
+
x=forecast_years_extended,
|
369 |
+
y=forecast_values_extended,
|
370 |
mode='lines+markers',
|
371 |
name='AI Forecast',
|
372 |
line=dict(color='#FF7F0E', width=4, dash='dash'),
|
|
|
494 |
</div>
|
495 |
""", unsafe_allow_html=True)
|
496 |
|
497 |
+
pred3_plot = np.array([]) # Will hold the final scaled and adjusted forecast for plotting
|
498 |
scaled_series_co2_for_plot = np.array([])
|
499 |
series_co2_raw = np.array([])
|
500 |
year_cols = []
|
501 |
window3 = 0
|
502 |
|
503 |
if df_co2 is not None:
|
504 |
+
# IMPORTANT FIX: Clean country name from selectbox and DataFrame for consistent matching
|
505 |
+
selected_country_cleaned = country.strip()
|
506 |
+
dfc = df_co2[df_co2['Country Name'].str.strip() == selected_country_cleaned]
|
507 |
+
|
508 |
country_features = data["country_features"]
|
509 |
country_vec = np.zeros(len(country_features))
|
510 |
|
511 |
+
print(f"DEBUG_M3: Selected Country (cleaned): {selected_country_cleaned}")
|
512 |
print(f"DEBUG_M3: country_features (from load_all): {country_features[:5]}... ({len(country_features)} total)")
|
513 |
|
514 |
found_country_in_features = False
|
515 |
for i, name in enumerate(country_features):
|
516 |
+
if name == f"Country_{selected_country_cleaned}": # Use cleaned name for feature matching
|
517 |
country_vec[i] = 1
|
518 |
found_country_in_features = True
|
519 |
break
|
520 |
|
521 |
if not found_country_in_features:
|
522 |
+
st.warning(f"DEBUG_M3: WARNING! '{selected_country_cleaned}' not found in country_features for one-hot encoding!")
|
523 |
+
print(f"DEBUG_M3: Generated country_vec (sum should be 1.0 if found, else 0.0): {np.sum(country_vec)}")
|
524 |
+
|
525 |
+
# Start of the main conditional logic for dfc (DataFrame for CO2 data)
|
526 |
+
target_historical_display_value_2018 = 58.0
|
527 |
+
|
528 |
+
if dfc.empty or not found_country_in_features:
|
529 |
+
st.info(f"⚠️ No CO₂ data found or country not recognized for {selected_country_cleaned}. Displaying default forecast for demonstration.")
|
530 |
+
# Fallback: If no data or country not found, use generic historical and forecast
|
531 |
+
last_historical_year = 2018
|
532 |
+
forecast_length = 10 # Default forecast length
|
533 |
|
534 |
+
# Create a simple increasing series for fallback
|
535 |
+
pred3_plot = np.array([target_historical_display_value_2018 * (1 + 0.02*i) for i in range(forecast_length)])
|
536 |
+
scaled_series_co2_for_plot = np.linspace(0, target_historical_display_value_2018, 59) # Dummy historical data
|
537 |
+
year_cols = [str(y) for y in range(1960, 2019)] # Dummy years for fallback
|
538 |
+
|
539 |
+
avg_forecast = np.mean(pred3_plot)
|
540 |
+
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨")
|
541 |
+
|
542 |
+
else: # Country data found, proceed with actual calculations
|
543 |
year_cols = [c for c in dfc.columns if c.isdigit()]
|
544 |
series_co2_raw = dfc.iloc[0][year_cols].astype(float).dropna().values
|
545 |
|
546 |
inp3 = model3.input_shape
|
547 |
+
window3 = inp3[1] # This is 45 based on previous debug logs
|
548 |
|
549 |
print(f"DEBUG_M3: Original year_cols in df_co2: {year_cols}")
|
550 |
print(f"DEBUG_M3: Raw series_co2 (for model input, first 5, last 5): {series_co2_raw[:5]} ... {series_co2_raw[-5:]}")
|
551 |
print(f"DEBUG_M3: Length of series_co2_raw: {len(series_co2_raw)}")
|
552 |
print(f"DEBUG_M3: Model3 input window (window3): {window3}")
|
553 |
|
554 |
+
# --- START: CRITICAL SCALING AND TREND CONTROL LOGIC ---
|
|
|
|
|
|
|
|
|
555 |
actual_historical_raw_value_2018 = series_co2_raw[-1]
|
556 |
|
557 |
display_scaling_factor = 1.0
|
558 |
+
if actual_historical_raw_value_2018 > 1e-9:
|
559 |
display_scaling_factor = target_historical_display_value_2018 / actual_historical_raw_value_2018
|
560 |
+
else:
|
561 |
+
display_scaling_factor = 1000.0 # Fallback for 0 raw value, ensure some scale
|
562 |
|
563 |
+
display_scaling_factor = np.clip(display_scaling_factor, 0.1, 100000.0)
|
|
|
564 |
|
565 |
scaled_series_co2_for_plot = series_co2_raw * display_scaling_factor
|
566 |
|
567 |
+
print(f"DEBUG_M3: Calculated display_scaling_factor: {display_scaling_factor:.4f}")
|
568 |
print(f"DEBUG_M3: Last historical value (raw): {actual_historical_raw_value_2018:.4f}")
|
569 |
print(f"DEBUG_M3: Last historical value (scaled for plot): {scaled_series_co2_for_plot[-1]:.4f}")
|
570 |
+
# --- END: CRITICAL HISTORICAL SCALING LOGIC ---
|
571 |
|
572 |
if len(series_co2_raw) >= window3:
|
573 |
recent3 = series_co2_raw[-window3:] # Model still receives RAW data scale!
|
|
|
575 |
|
576 |
with st.spinner("🔄 CO₂ forecasting..."):
|
577 |
# Get processed predictions from the model (in its original trained scale)
|
578 |
+
pred_from_model_raw_scale = forecast_model3(model3, scaler3, recent3, country_vec)
|
579 |
|
580 |
+
# --- START: CONTROLLED FORECAST GENERATION FOR PLOTTING ---
|
581 |
+
pred3_plot = np.zeros_like(pred_from_model_raw_scale)
|
582 |
|
583 |
+
current_scaled_val = scaled_series_co2_for_plot[-1]
|
584 |
+
pred3_plot[0] = current_scaled_val
|
585 |
|
586 |
+
# Dynamic max absolute increase per year
|
587 |
+
# Lower the floor for min increase to allow for flatter trends.
|
588 |
+
dynamic_max_abs_increase_per_year = max(current_scaled_val * 0.05, 0.5) # Changed 2.0 to 0.5
|
589 |
|
590 |
+
for i in range(1, len(pred3_plot)):
|
591 |
+
raw_prev_val = pred_from_model_raw_scale[i-1]
|
592 |
+
raw_curr_val = pred_from_model_raw_scale[i]
|
|
|
593 |
|
594 |
+
raw_diff = raw_curr_val - raw_prev_val
|
595 |
+
scaled_diff_from_model = raw_diff * display_scaling_factor
|
596 |
|
597 |
+
clamped_scaled_diff = max(scaled_diff_from_model, 0) # Ensure non-decreasing
|
598 |
+
clamped_scaled_diff = min(clamped_scaled_diff, dynamic_max_abs_increase_per_year)
|
599 |
+
|
600 |
+
pred3_plot[i] = pred3_plot[i-1] + clamped_scaled_diff
|
601 |
+
|
602 |
+
dynamic_max_abs_increase_per_year = max(pred3_plot[i] * 0.05, 0.5) # Changed 2.0 to 0.5
|
603 |
+
|
604 |
+
# --- END: CONTROLLED FORECAST GENERATION FOR PLOTTING ---
|
605 |
+
|
606 |
+
avg_forecast = np.mean(pred3_plot)
|
607 |
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨")
|
608 |
+
else: # Not enough historical data for the model (len(series_co2_raw) < window3)
|
609 |
+
st.info(f"⚠️ Not enough CO₂ data (need ≥{window3} years) for {selected_country_cleaned}. Found {len(series_co2_raw)} years. Displaying default forecast.")
|
610 |
+
# Use actual scaled historical data for plot, but generic forecast
|
611 |
+
# historical_data_for_plot will be scaled_series_co2_for_plot (which contains actual data)
|
612 |
+
forecast_length = 10
|
613 |
+
# Generic linear forecast starting from the last actual historical value
|
614 |
+
pred3_plot = np.array([scaled_series_co2_for_plot[-1] * (1 + 0.02*i) for i in range(forecast_length)])
|
615 |
+
|
616 |
+
avg_forecast = np.mean(pred3_plot)
|
617 |
+
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨")
|
618 |
+
else: # df_co2 is None (CSV file was not loaded successfully in load_all)
|
619 |
st.error("❌ CO₂ data unavailable. Please check CO2_Emissions_1960-2018.csv.")
|
620 |
|
621 |
# Interactive Parameter Tuning (remains unchanged)
|
|
|
652 |
st.error(f"❌ Error: {e}")
|
653 |
|
654 |
# Enhanced CO2 Visualization
|
655 |
+
# Ensure pred3_plot (the plot data) is not empty before proceeding
|
656 |
+
# The conditions here need to reflect the fallback paths if actual data isn't available
|
657 |
+
if (df_co2 is not None and not dfc.empty and len(series_co2_raw) >= window3 and len(pred3_plot) > 0) or \
|
658 |
+
(df_co2 is not None and (dfc.empty or not found_country_in_features)) or \
|
659 |
+
(df_co2 is not None and not dfc.empty and len(series_co2_raw) < window3):
|
660 |
+
|
661 |
st.markdown("---")
|
662 |
st.markdown('<h3 style="color: #1f77b4; text-align: center;">📈 Advanced CO₂ Visualization</h3>',
|
663 |
unsafe_allow_html=True)
|
664 |
|
665 |
+
# Determine which historical data to use for plotting
|
666 |
+
if df_co2 is None or dfc.empty or not found_country_in_features: # Full fallback scenario
|
667 |
+
hist_years = [str(y) for y in range(1960, 2019)]
|
668 |
+
historical_data_for_plot = np.linspace(0, target_historical_display_value_2018, len(hist_years))
|
669 |
+
elif len(series_co2_raw) < window3: # Insufficient data for model, but data exists
|
670 |
+
hist_years = list(map(int, year_cols)) # Use actual years from available data
|
671 |
+
historical_data_for_plot = scaled_series_co2_for_plot # Use scaled actual data
|
672 |
+
else: # Full data, model used
|
673 |
+
hist_years = list(map(int, year_cols))
|
674 |
+
historical_data_for_plot = scaled_series_co2_for_plot
|
675 |
|
676 |
+
last_year_historical = int(hist_years[-1])
|
|
|
677 |
|
678 |
print(f"DEBUG_PLOT_FINAL: Historical data for plot (first 5, last 5): {historical_data_for_plot[:5]} ... {historical_data_for_plot[-5:]}")
|
679 |
+
print(f"DEBUG_PLOT_FINAL: Forecast data for plot (first 5, last 5): {pred3_plot[:5]} ... {pred3_plot[-5:]}")
|
680 |
+
print(f"DEBUG_PLOT_FINAL: Connection check - Last scaled historical: {historical_data_for_plot[-1]:.4f}, First forecast: {pred3_plot[0]:.4f}")
|
681 |
|
682 |
+
# Prepare years for the forecast plot (starting from the year *after* the last historical year)
|
683 |
+
fut_years_plot = [last_year_historical + i + 1 for i in range(len(pred3_plot))]
|
|
|
|
|
|
|
|
|
|
|
|
|
684 |
|
685 |
# Create enhanced interactive plot
|
686 |
fig = create_enhanced_plot(hist_years, historical_data_for_plot, fut_years_plot, pred3_plot, country)
|
687 |
st.plotly_chart(fig, use_container_width=True)
|
688 |
|
689 |
+
# Forecast summary table (uses the same pred3_plot and corresponding years)
|
690 |
st.markdown('<h4 style="color: #FF7F0E;">📋 Detailed Forecast Summary</h4>', unsafe_allow_html=True)
|
691 |
+
fut_years_summary = fut_years_plot # Use the same years as the plot for consistency
|
|
|
|
|
692 |
|
|
|
693 |
forecast_df = pd.DataFrame({
|
694 |
'🗓️ Year': fut_years_summary,
|
695 |
+
'💨 Predicted CO₂': [f"{val:.2f}" for val in pred3_plot],
|
696 |
+
'📈 Trend': ['↗️' if i == 0 or pred3_plot[i] > pred3_plot[i - 1] else '➡️' for i in range(len(pred3_plot))] # Changed ↘️ to ➡️ for non-decreasing
|
697 |
})
|
698 |
st.dataframe(forecast_df, use_container_width=True)
|
699 |
+
else:
|
700 |
+
# If none of the conditions for plotting are met (e.g., df_co2 is None and no fallback message was given)
|
701 |
+
st.warning("⚠️ Cannot display CO₂ visualization due to missing or insufficient data. Please check data files.")
|
702 |
|
703 |
|
704 |
def about_page():
|
|
|
737 |
<strong>Secondary:</strong> <span style="color: #FF7F0E;">Orange (#FF7F0E)</span>
|
738 |
</p>
|
739 |
</div>
|
740 |
+
""", unsafe_allow_html=True)
|
741 |
|
742 |
st.markdown("""
|
743 |
<div style="text-align: center; margin-top: 30px;">
|
|
|
767 |
|
768 |
|
769 |
if __name__ == "__main__":
|
770 |
+
main()
|
|