Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,157 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
import numpy as np
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
"
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
custom_objects={'focal_loss_fixed': focal_loss()}
|
28 |
)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
def predict_fire(image):
|
32 |
-
img = Image.fromarray(image).convert("RGB")
|
33 |
-
|
34 |
-
# Preprocess for vgg16_model (128x128 input size)
|
35 |
-
vgg16_img = img.resize((128, 128))
|
36 |
-
vgg16_img_array = np.array(vgg16_img) / 255.0
|
37 |
-
vgg16_img_array = np.expand_dims(vgg16_img_array, axis=0)
|
38 |
-
|
39 |
-
# Fire detection using vgg16_model
|
40 |
-
fire_pred = vgg16_model.predict(vgg16_img_array)
|
41 |
-
fire_status = "Fire Detected" if fire_pred[0][0] > 0.5 else "No Fire Detected"
|
42 |
-
|
43 |
-
# If fire is detected, preprocess for xception_model (224x224 input size)
|
44 |
-
if fire_status == "Fire Detected":
|
45 |
-
xception_img = img.resize((224, 224))
|
46 |
-
xception_img_array = np.array(xception_img) / 255.0
|
47 |
-
xception_img_array = np.expand_dims(xception_img_array, axis=0)
|
48 |
-
|
49 |
-
# Severity prediction using xception_model
|
50 |
-
severity_pred = xception_model.predict(xception_img_array)
|
51 |
-
severity_level = np.argmax(severity_pred[0])
|
52 |
-
severity = ["Mild", "Moderate", "Severe"][severity_level]
|
53 |
-
|
54 |
-
# Static rule-based recommendations with detailed instructions
|
55 |
-
if severity == "Mild":
|
56 |
-
recommendation = (
|
57 |
-
"Fire detected is mild and manageable. "
|
58 |
-
"For the Fire Department: Ensure continuous monitoring of the fire. "
|
59 |
-
"Deploy fire trucks and extinguishing equipment if necessary to prevent escalation. "
|
60 |
-
"For the Public: Stay alert and stay indoors. Evacuate only if advised by authorities. "
|
61 |
-
"Ensure clear access routes for emergency services. "
|
62 |
-
"Keep fire safety equipment such as fire extinguishers readily available."
|
63 |
-
)
|
64 |
-
elif severity == "Moderate":
|
65 |
-
recommendation = (
|
66 |
-
"Fire detected is moderate and poses a significant risk. "
|
67 |
-
"For the Fire Department: Immediate response is needed. "
|
68 |
-
"Deploy sufficient fire trucks, helicopters (if possible), and personnel to contain the fire. "
|
69 |
-
"Establish firebreaks and coordinate with neighboring departments. "
|
70 |
-
"For the Public: Evacuate the area promptly as the fire might spread. "
|
71 |
-
"Follow evacuation routes and do not return to the area until authorities deem it safe. "
|
72 |
-
"Be cautious of smoke inhalation, and wear protective masks if available."
|
73 |
-
)
|
74 |
-
else: # Severe
|
75 |
-
recommendation = (
|
76 |
-
"Severe fire detected with rapid spread potential. Immediate action is critical. "
|
77 |
-
"For the Fire Department: Prioritize evacuation operations. "
|
78 |
-
"Deploy all available resources, including specialized teams and air support. "
|
79 |
-
"Set up perimeters around the affected area and prevent access. "
|
80 |
-
"Coordinate with national agencies for additional resources and backup. "
|
81 |
-
"For the Public: Evacuate immediately. Leave all belongings behind and proceed to designated safe zones. "
|
82 |
-
"Avoid smoke exposure and keep away from fire zones. Follow all official instructions and do not attempt to return to the area until clearance is given by emergency services. "
|
83 |
-
"Remain in contact with local authorities for further updates."
|
84 |
-
)
|
85 |
-
|
86 |
-
else:
|
87 |
-
severity = "N/A"
|
88 |
-
recommendation = (
|
89 |
-
"No fire detected. However, always be cautious of any unusual smoke or smells in your environment. "
|
90 |
-
"Ensure that fire alarms are functioning, and regularly check fire extinguishers. "
|
91 |
-
"Stay prepared by familiarizing yourself with fire evacuation routes and emergency contact numbers."
|
92 |
-
)
|
93 |
-
|
94 |
-
return fire_status, severity, recommendation
|
95 |
-
|
96 |
-
|
97 |
-
# Gradio interface
|
98 |
interface = gr.Interface(
|
99 |
-
fn=
|
100 |
-
inputs=gr.Image(type=
|
101 |
outputs=[
|
102 |
-
gr.Textbox(label=
|
103 |
-
gr.Textbox(label=
|
104 |
-
gr.
|
105 |
],
|
106 |
-
title=
|
107 |
-
description=
|
108 |
)
|
109 |
|
110 |
-
if __name__ ==
|
111 |
-
interface.launch()
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
import numpy as np
|
5 |
+
import joblib
|
6 |
+
import google.generativeai as genai
|
7 |
+
import gradio as gr
|
8 |
+
from google.colab import drive, userdata
|
9 |
+
from datetime import datetime, timedelta
|
10 |
+
from tensorflow.keras.models import load_model
|
11 |
+
from tensorflow.keras.preprocessing import image as keras_image
|
12 |
+
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
|
13 |
+
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
|
14 |
+
from tensorflow.keras.losses import BinaryFocalCrossentropy
|
15 |
+
|
16 |
+
# --- CONFIGURATION ---
|
17 |
+
# Coordinates for a representative forest area in Pakistan
|
18 |
+
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
|
19 |
+
API_URL = (
|
20 |
+
"https://archive-api.open-meteo.com/v1/archive"
|
21 |
+
"?latitude={lat}&longitude={lon}"
|
22 |
+
"&start_date={start}&end_date={end}"
|
23 |
+
"&daily=temperature_2m_max,temperature_2m_min,"
|
24 |
+
"precipitation_sum,windspeed_10m_max,"
|
25 |
+
"relative_humidity_2m_max,relative_humidity_2m_min"
|
26 |
+
"&timezone=UTC"
|
|
|
27 |
)
|
28 |
|
29 |
+
# --- GEMINI SETUP ---
|
30 |
+
GOOGLE_API_KEY = userdata.get('GOOGLE_API_KEY')
|
31 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
32 |
+
flash = genai.GenerativeModel('gemini-1.5-flash')
|
33 |
+
|
34 |
+
# --- LOAD MODELS ---
|
35 |
+
def load_models():
|
36 |
+
drive.mount('/content/drive', force_remount=False)
|
37 |
+
# Fire detection (VGG16 binary classifier)
|
38 |
+
vgg_model = load_model(
|
39 |
+
'/content/drive/MyDrive/vgg16_focal_unfreeze_more.keras',
|
40 |
+
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
41 |
+
)
|
42 |
+
# Severity classification (Xception + RF/XGB ensemble)
|
43 |
+
def focal_loss_fixed(gamma=2., alpha=.25):
|
44 |
+
import tensorflow.keras.backend as K
|
45 |
+
def loss_fn(y_true, y_pred):
|
46 |
+
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
|
47 |
+
ce = -y_true * K.log(y_pred)
|
48 |
+
w = alpha * K.pow(1-y_pred, gamma)
|
49 |
+
return K.mean(w*ce, axis=-1)
|
50 |
+
return loss_fn
|
51 |
+
xce_model = load_model(
|
52 |
+
'/content/drive/My Drive/severity_post_tta.keras',
|
53 |
+
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
54 |
+
)
|
55 |
+
rf_model = joblib.load('/content/drive/My Drive/ensemble_rf_model.pkl')
|
56 |
+
xgb_model = joblib.load('/content/drive/My Drive/ensemble_xgb_model.pkl')
|
57 |
+
# Weather trend (Logistic Regression)
|
58 |
+
lr_model = joblib.load('/content/drive/MyDrive/wildfire_logistic_model_synthetic.joblib')
|
59 |
+
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
60 |
+
|
61 |
+
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
62 |
+
|
63 |
+
# --- LABEL MAPS ---
|
64 |
+
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
65 |
+
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
66 |
+
trend_rules = {
|
67 |
+
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
|
68 |
+
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
|
69 |
+
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
70 |
+
}
|
71 |
+
|
72 |
+
# --- PIPELINE FUNCTIONS ---
|
73 |
+
def detect_fire(img):
|
74 |
+
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
75 |
+
x = vgg_preprocess(x)
|
76 |
+
prob = float(vgg_model.predict(x)[0][0])
|
77 |
+
return prob >= 0.5, prob
|
78 |
+
|
79 |
+
|
80 |
+
def classify_severity(img):
|
81 |
+
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
82 |
+
x = xce_preprocess(x)
|
83 |
+
preds = xception_model.predict(x)
|
84 |
+
rf_p = rf_model.predict(preds)[0]
|
85 |
+
xgb_p = xgb_model.predict(preds)[0]
|
86 |
+
ensemble = int(round((rf_p + xgb_p)/2))
|
87 |
+
return target_map.get(ensemble, 'moderate')
|
88 |
+
|
89 |
+
|
90 |
+
def fetch_weather_trend(lat, lon):
|
91 |
+
end = datetime.utcnow()
|
92 |
+
start = end - timedelta(days=1)
|
93 |
+
url = API_URL.format(lat=lat, lon=lon,
|
94 |
+
start=start.strftime('%Y-%m-%d'),
|
95 |
+
end=end.strftime('%Y-%m-%d'))
|
96 |
+
data = requests.get(url).json().get('daily', {})
|
97 |
+
df = pd.DataFrame(data)
|
98 |
+
# convert to numeric
|
99 |
+
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
100 |
+
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
101 |
+
df[c] = pd.to_numeric(df.get(c, []), errors='coerce')
|
102 |
+
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
103 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
104 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
105 |
+
df['wind_speed'] = df['windspeed_10m_max']
|
106 |
+
df['fire_risk_score'] = (
|
107 |
+
0.4*(df['temperature']/55) +
|
108 |
+
0.2*(1-df['humidity']/100) +
|
109 |
+
0.3*(df['wind_speed']/60) +
|
110 |
+
0.1*(1-df['precipitation']/50)
|
111 |
+
)
|
112 |
+
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
113 |
+
v = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
|
114 |
+
trend_cl = lr_model.predict(v)[0]
|
115 |
+
return trend_map.get(trend_cl)
|
116 |
+
|
117 |
+
|
118 |
+
def generate_recommendations(wildfire_present, severity, weather_trend):
|
119 |
+
prompt = f"""
|
120 |
+
You are a wildfire management expert.
|
121 |
+
- Wildfire Present: {wildfire_present}
|
122 |
+
- Severity: {severity}
|
123 |
+
- Weather Trend: {weather_trend}
|
124 |
+
Provide:
|
125 |
+
1. Immediate actions
|
126 |
+
2. Evacuation guidelines
|
127 |
+
3. Short-term containment
|
128 |
+
4. Long-term prevention & recovery
|
129 |
+
5. Community education
|
130 |
+
"""
|
131 |
+
return flash.generate_content(prompt).text
|
132 |
+
|
133 |
+
# --- GRADIO INTERFACE ---
|
134 |
+
def pipeline(image):
|
135 |
+
img = Image.fromarray(image).convert('RGB')
|
136 |
+
fire, prob = detect_fire(img)
|
137 |
+
if not fire:
|
138 |
+
return f"No wildfire detected (prob={prob:.2f})", "N/A", "No wildfire detected. Stay alert."
|
139 |
+
severity = classify_severity(img)
|
140 |
+
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
141 |
+
recs = generate_recommendations(True, severity, trend)
|
142 |
+
return f"Fire Detected (prob={prob:.2f})", severity.title(), recs
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
interface = gr.Interface(
|
145 |
+
fn=pipeline,
|
146 |
+
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
|
147 |
outputs=[
|
148 |
+
gr.Textbox(label='Fire Status'),
|
149 |
+
gr.Textbox(label='Severity Level'),
|
150 |
+
gr.Markdown(label='Recommendations')
|
151 |
],
|
152 |
+
title='Wildfire Detection & Management Assistant',
|
153 |
+
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert recommendations.'
|
154 |
)
|
155 |
|
156 |
+
if __name__ == '__main__':
|
157 |
+
interface.launch()
|