Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load models
|
7 |
+
vgg16_model = tf.keras.models.load_model(
|
8 |
+
"/content/drive/MyDrive/Deep Learning Project/vgg16_best_model.keras"
|
9 |
+
)
|
10 |
+
xception_model = tf.keras.models.load_model(
|
11 |
+
"/content/drive/MyDrive/Deep Learning Project/Tri Classification/xception_best.keras"
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def predict_fire(image):
|
16 |
+
img = Image.fromarray(image).convert("RGB")
|
17 |
+
img = img.resize((224, 224)) # Match model input size
|
18 |
+
img_array = np.array(img) / 255.0
|
19 |
+
img_array = np.expand_dims(img_array, axis=0)
|
20 |
+
|
21 |
+
fire_pred = vgg16_model.predict(img_array)
|
22 |
+
fire_status = "Fire Detected" if fire_pred[0][0] > 0.5 else "No Fire Detected"
|
23 |
+
|
24 |
+
if fire_status == "Fire Detected":
|
25 |
+
severity_pred = xception_model.predict(img_array)
|
26 |
+
severity_level = np.argmax(severity_pred[0])
|
27 |
+
severity = ["Mild", "Moderate", "Severe"][severity_level]
|
28 |
+
else:
|
29 |
+
severity = "N/A"
|
30 |
+
|
31 |
+
return fire_status, severity
|
32 |
+
|
33 |
+
|
34 |
+
# Gradio interface
|
35 |
+
interface = gr.Interface(
|
36 |
+
fn=predict_fire,
|
37 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
38 |
+
outputs=[
|
39 |
+
gr.Textbox(label="Fire Status"),
|
40 |
+
gr.Textbox(label="Severity Level"),
|
41 |
+
],
|
42 |
+
title="Fire Prediction and Severity Classification",
|
43 |
+
description="Upload an image to predict fire and its severity level (Mild, Moderate, Severe).",
|
44 |
+
)
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
interface.launch()
|