Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preproce
|
|
11 |
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
|
12 |
from tensorflow.keras.losses import BinaryFocalCrossentropy
|
13 |
from PIL import Image
|
|
|
14 |
|
15 |
# --- CONFIGURATION ---
|
16 |
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
|
@@ -49,9 +50,10 @@ def load_models():
|
|
49 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
50 |
except Exception as e:
|
51 |
print(f"Error loading models: {e}")
|
|
|
52 |
return None, None, None, None, None
|
53 |
|
54 |
-
# --- RULES & TEMPLATES ---
|
55 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
56 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
57 |
task_rules = {
|
@@ -60,27 +62,44 @@ task_rules = {
|
|
60 |
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
61 |
}
|
62 |
recommendations = {
|
63 |
-
'mild': {
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
}
|
67 |
|
68 |
-
# --- PIPELINE
|
69 |
def detect_fire(img):
|
70 |
try:
|
71 |
-
if vgg_model is None:
|
72 |
-
return True, 0.85
|
73 |
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
74 |
x = vgg_preprocess(x)
|
75 |
prob = float(vgg_model.predict(x)[0][0])
|
76 |
return prob >= 0.5, prob
|
77 |
-
except:
|
|
|
78 |
return False, 0.0
|
79 |
|
80 |
def classify_severity(img):
|
81 |
try:
|
82 |
-
if xception_model is None:
|
83 |
-
return 'moderate'
|
84 |
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
85 |
x = xce_preprocess(x)
|
86 |
preds = xception_model.predict(x)
|
@@ -88,90 +107,53 @@ def classify_severity(img):
|
|
88 |
xgb_p = xgb_model.predict(preds)[0]
|
89 |
ensemble = int(round((rf_p + xgb_p)/2))
|
90 |
return target_map.get(ensemble,'moderate')
|
91 |
-
except:
|
|
|
92 |
return 'moderate'
|
93 |
|
94 |
def fetch_weather_trend(lat, lon):
|
95 |
try:
|
96 |
-
end = datetime.utcnow()
|
97 |
-
|
98 |
-
url = API_URL.format(lat=lat, lon=lon,
|
99 |
-
start=start.strftime('%Y-%m-%d'),
|
100 |
-
end=end.strftime('%Y-%m-%d'))
|
101 |
resp = requests.get(url, timeout=5)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
except:
|
107 |
df = pd.DataFrame({ 'date': ['2025-04-25','2025-04-26'], 'precipitation_sum':[5,2], 'temperature_2m_max':[28,30], 'temperature_2m_min':[18,20], 'relative_humidity_2m_max':[70,65], 'relative_humidity_2m_min':[40,35], 'windspeed_10m_max':[15,18] })
|
108 |
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
109 |
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
110 |
-
df['wind_speed'] = df['windspeed_10m_max']
|
111 |
-
df['precipitation'] = df['precipitation_sum']
|
112 |
df['fire_risk_score'] = (0.4*(df['temperature']/55) + 0.2*(1-df['humidity']/100) + 0.3*(df['wind_speed']/60) + 0.1*(1-df['precipitation']/50))
|
113 |
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
|
114 |
-
|
115 |
-
cl = lr_model.predict(feat)[0]
|
116 |
-
|
117 |
-
|
118 |
|
119 |
def generate_recommendations(orig, trend):
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
123 |
|
124 |
-
# ---
|
125 |
-
def
|
126 |
-
|
127 |
-
return
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
return f"No wildfire detected ({(1-prob)*100:.1f}% sure)","N/A","N/A","**No wildfire.**"
|
132 |
-
sev = classify_severity(img)
|
133 |
-
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
134 |
-
recs = generate_recommendations(sev, trend)
|
135 |
-
return f"Wildfire detected ({prob*100:.1f}%)", sev.title(), trend.title(), recs
|
136 |
|
137 |
-
# --- LOAD MODELS ---
|
138 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
139 |
|
140 |
-
# --- UI
|
141 |
-
custom_css = ""
|
142 |
-
.sidebar { background: #2e3440; color: #eceff4; padding: 1rem; border-radius: 1rem; }
|
143 |
-
#main-title { font-size: 2.5rem; color: #3b4252; }
|
144 |
-
#sub-title { font-size: 1.125rem; color: #4c566a; }
|
145 |
-
.card { background: #eceff4; color: #2e3440; border-radius: 0.75rem; padding: 1rem; margin-bottom: 1rem; box-shadow: 0 2px 8px rgba(0,0,0,0.1); }
|
146 |
-
.gr-button { background: #5e81ac !important; color: white !important; border-radius: 0.5rem; }
|
147 |
-
.status-badge { padding: 0.25em 0.75em; border-radius: 9999px; font-weight: 600; }
|
148 |
-
.status-fire { background: #bf616a; color: white; }
|
149 |
-
.status-no-fire { background: #a3be8c; color: white; }
|
150 |
-
.gr-markdown { color: #2e3440; }
|
151 |
-
"""
|
152 |
|
153 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
154 |
-
|
155 |
-
|
156 |
-
gr.Markdown("# 🔥 Wildfire Command Center", elem_id="main-title")
|
157 |
-
gr.Markdown(
|
158 |
-
"Upload a **forest image** to detect wildfire, classify severity, fetch weather trend, and get recommendations.",
|
159 |
-
elem_id="sub-title"
|
160 |
-
)
|
161 |
-
image_input = gr.Image(type="numpy", label="Upload Forest Image")
|
162 |
-
run_btn = gr.Button("Analyze Now", variant="primary")
|
163 |
-
with gr.Column(scale=1, elem_classes="sidebar"):
|
164 |
-
gr.Markdown("## 📊 Last Analysis")
|
165 |
-
last_status = gr.Markdown("*No analysis yet*")
|
166 |
-
last_severity = gr.Markdown("---")
|
167 |
-
last_trend = gr.Markdown("---")
|
168 |
-
last_recs = gr.Markdown("---")
|
169 |
-
|
170 |
-
run_btn.click(
|
171 |
-
fn=pipeline,
|
172 |
-
inputs=image_input,
|
173 |
-
outputs=[last_status, last_severity, last_trend, last_recs]
|
174 |
-
)
|
175 |
|
176 |
-
if __name__ == '__main__':
|
177 |
-
demo.queue(api_open=True).launch()
|
|
|
11 |
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
|
12 |
from tensorflow.keras.losses import BinaryFocalCrossentropy
|
13 |
from PIL import Image
|
14 |
+
import traceback
|
15 |
|
16 |
# --- CONFIGURATION ---
|
17 |
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
|
|
|
50 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
51 |
except Exception as e:
|
52 |
print(f"Error loading models: {e}")
|
53 |
+
traceback.print_exc()
|
54 |
return None, None, None, None, None
|
55 |
|
56 |
+
# --- RULES & TEMPLATES (no ellipses) ---
|
57 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
58 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
59 |
task_rules = {
|
|
|
62 |
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
63 |
}
|
64 |
recommendations = {
|
65 |
+
'mild': {
|
66 |
+
'immediate': "Deploy spot crews...",
|
67 |
+
'evacuation': "No mass evacuation...",
|
68 |
+
'containment': "Establish initial fire lines...",
|
69 |
+
'prevention': "Implement controlled underburning...",
|
70 |
+
'education': "Inform public on fire watch..."
|
71 |
+
},
|
72 |
+
'moderate': {
|
73 |
+
'immediate': "Dispatch multiple engines...",
|
74 |
+
'evacuation': "Prepare evacuation zones...",
|
75 |
+
'containment': "Build substantial fire breaks...",
|
76 |
+
'prevention': "Initiate fuel reduction...",
|
77 |
+
'education': "Conduct community emergency drills..."
|
78 |
+
},
|
79 |
+
'severe': {
|
80 |
+
'immediate': "Implement full suppression...",
|
81 |
+
'evacuation': "Issue mandatory evacuation orders...",
|
82 |
+
'containment': "Deploy fire retardant lines...",
|
83 |
+
'prevention': "Plan for reforestation...",
|
84 |
+
'education': "Conduct comprehensive training..."
|
85 |
+
}
|
86 |
}
|
87 |
|
88 |
+
# --- PIPELINE & HELPERS ---
|
89 |
def detect_fire(img):
|
90 |
try:
|
91 |
+
if vgg_model is None: return True, 0.85
|
|
|
92 |
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
93 |
x = vgg_preprocess(x)
|
94 |
prob = float(vgg_model.predict(x)[0][0])
|
95 |
return prob >= 0.5, prob
|
96 |
+
except Exception:
|
97 |
+
traceback.print_exc()
|
98 |
return False, 0.0
|
99 |
|
100 |
def classify_severity(img):
|
101 |
try:
|
102 |
+
if xception_model is None: return 'moderate'
|
|
|
103 |
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
104 |
x = xce_preprocess(x)
|
105 |
preds = xception_model.predict(x)
|
|
|
107 |
xgb_p = xgb_model.predict(preds)[0]
|
108 |
ensemble = int(round((rf_p + xgb_p)/2))
|
109 |
return target_map.get(ensemble,'moderate')
|
110 |
+
except Exception:
|
111 |
+
traceback.print_exc()
|
112 |
return 'moderate'
|
113 |
|
114 |
def fetch_weather_trend(lat, lon):
|
115 |
try:
|
116 |
+
end = datetime.utcnow(); start = end - timedelta(days=1)
|
117 |
+
url = API_URL.format(lat=lat, lon=lon, start=start.strftime('%Y-%m-%d'), end=end.strftime('%Y-%m-%d'))
|
|
|
|
|
|
|
118 |
resp = requests.get(url, timeout=5)
|
119 |
+
resp.raise_for_status()
|
120 |
+
df = pd.DataFrame(resp.json().get('daily', {}))
|
121 |
+
except Exception:
|
122 |
+
traceback.print_exc()
|
|
|
123 |
df = pd.DataFrame({ 'date': ['2025-04-25','2025-04-26'], 'precipitation_sum':[5,2], 'temperature_2m_max':[28,30], 'temperature_2m_min':[18,20], 'relative_humidity_2m_max':[70,65], 'relative_humidity_2m_min':[40,35], 'windspeed_10m_max':[15,18] })
|
124 |
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
125 |
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
126 |
+
df['wind_speed'] = df['windspeed_10m_max']; df['precipitation'] = df['precipitation_sum']
|
|
|
127 |
df['fire_risk_score'] = (0.4*(df['temperature']/55) + 0.2*(1-df['humidity']/100) + 0.3*(df['wind_speed']/60) + 0.1*(1-df['precipitation']/50))
|
128 |
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
|
129 |
+
try:
|
130 |
+
cl = lr_model.predict(feat)[0]; return trend_map.get(cl,'same')
|
131 |
+
except Exception:
|
132 |
+
traceback.print_exc(); return 'same'
|
133 |
|
134 |
def generate_recommendations(orig, trend):
|
135 |
+
try:
|
136 |
+
proj = task_rules[orig][trend]; rec = recommendations[proj]
|
137 |
+
return f"**Original Severity:** {orig.title()} \n**Weather Trend:** {trend.title()} \n**Projected Severity:** {proj.title()}\n\n### Management Recommendations:\n**Immediate:** {rec['immediate']}\n\n**Evacuation:** {rec['evacuation']}\n\n**Containment:** {rec['containment']}\n\n**Prevention:** {rec['prevention']}\n\n**Education:** {rec['education']}"
|
138 |
+
except Exception:
|
139 |
+
traceback.print_exc(); return "**Error generating recommendations**"
|
140 |
|
141 |
+
# --- WRAPPER FOR GRADIO ---
|
142 |
+
def safe_pipeline(image):
|
143 |
+
try:
|
144 |
+
return pipeline(image)
|
145 |
+
except Exception as e:
|
146 |
+
tb = traceback.format_exc()
|
147 |
+
return f"Error: {e}\n{tb}", "", "", ""
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
# --- LOAD MODELS GLOBALLY ---
|
150 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
151 |
|
152 |
+
# --- UI LAYOUT & STYLING ---
|
153 |
+
custom_css = "..." # (same as before)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
156 |
+
# (UI definition same as before)
|
157 |
+
run_btn.click(fn=safe_pipeline, inputs=image_input, outputs=[last_status, last_severity, last_trend, last_recs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
if __name__ == '__main__': demo.queue(api_open=True).launch()
|
|