Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import numpy as np
|
|
5 |
import pickle
|
6 |
from google import genai
|
7 |
import gradio as gr
|
8 |
-
from google.colab import drive
|
9 |
from datetime import datetime, timedelta
|
10 |
from tensorflow.keras.models import load_model
|
11 |
from tensorflow.keras.preprocessing import image as keras_image
|
@@ -35,28 +34,32 @@ flash = genai.GenerativeModel('gemini-1.5-flash')
|
|
35 |
|
36 |
# --- LOAD MODELS ---
|
37 |
def load_models():
|
38 |
-
|
39 |
vgg_model = load_model(
|
40 |
-
'
|
41 |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
42 |
)
|
|
|
43 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
44 |
import tensorflow.keras.backend as K
|
45 |
def loss_fn(y_true, y_pred):
|
46 |
-
eps = K.epsilon()
|
|
|
47 |
ce = -y_true * K.log(y_pred)
|
48 |
-
|
49 |
-
return K.mean(
|
50 |
return loss_fn
|
51 |
xce_model = load_model(
|
52 |
-
'
|
53 |
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
54 |
)
|
55 |
-
|
|
|
56 |
rf_model = pickle.load(f)
|
57 |
-
with open('
|
58 |
xgb_model = pickle.load(f)
|
59 |
-
|
|
|
60 |
lr_model = pickle.load(f)
|
61 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
62 |
|
@@ -72,6 +75,7 @@ trend_rules = {
|
|
72 |
}
|
73 |
|
74 |
# --- PIPELINE FUNCTIONS ---
|
|
|
75 |
def detect_fire(img):
|
76 |
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
77 |
x = vgg_preprocess(x)
|
@@ -86,7 +90,7 @@ def classify_severity(img):
|
|
86 |
rf_p = rf_model.predict(preds)[0]
|
87 |
xgb_p = xgb_model.predict(preds)[0]
|
88 |
ensemble = int(round((rf_p + xgb_p)/2))
|
89 |
-
return target_map.get(ensemble,'moderate')
|
90 |
|
91 |
|
92 |
def fetch_weather_trend(lat, lon):
|
@@ -99,15 +103,15 @@ def fetch_weather_trend(lat, lon):
|
|
99 |
df = pd.DataFrame(data)
|
100 |
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
101 |
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
102 |
-
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
|
103 |
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
104 |
-
df['temperature'] = (df['temperature_2m_max']+df['temperature_2m_min'])/2
|
105 |
-
df['humidity'] = (df['relative_humidity_2m_max']+df['relative_humidity_2m_min'])/2
|
106 |
df['wind_speed'] = df['windspeed_10m_max']
|
107 |
df['fire_risk_score'] = (
|
108 |
-
0.4*(df['temperature']/55)+
|
109 |
-
0.2*(1-df['humidity']/100)+
|
110 |
-
0.3*(df['wind_speed']/60)+
|
111 |
0.1*(1-df['precipitation']/50)
|
112 |
)
|
113 |
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
@@ -132,6 +136,7 @@ Provide:
|
|
132 |
return flash.generate_content(prompt).text
|
133 |
|
134 |
# --- GRADIO INTERFACE ---
|
|
|
135 |
def pipeline(image):
|
136 |
img = Image.fromarray(image).convert('RGB')
|
137 |
fire, prob = detect_fire(img)
|
|
|
5 |
import pickle
|
6 |
from google import genai
|
7 |
import gradio as gr
|
|
|
8 |
from datetime import datetime, timedelta
|
9 |
from tensorflow.keras.models import load_model
|
10 |
from tensorflow.keras.preprocessing import image as keras_image
|
|
|
34 |
|
35 |
# --- LOAD MODELS ---
|
36 |
def load_models():
|
37 |
+
# Load VGG16 wildfire detector
|
38 |
vgg_model = load_model(
|
39 |
+
'vgg16_focal_unfreeze_more.keras',
|
40 |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
41 |
)
|
42 |
+
# Load Xception severity classifier
|
43 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
44 |
import tensorflow.keras.backend as K
|
45 |
def loss_fn(y_true, y_pred):
|
46 |
+
eps = K.epsilon()
|
47 |
+
y_pred = K.clip(y_pred, eps, 1. - eps)
|
48 |
ce = -y_true * K.log(y_pred)
|
49 |
+
weight = alpha * K.pow(1 - y_pred, gamma)
|
50 |
+
return K.mean(weight * ce, axis=-1)
|
51 |
return loss_fn
|
52 |
xce_model = load_model(
|
53 |
+
'severity_post_tta.keras',
|
54 |
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
55 |
)
|
56 |
+
# Load ensemble models
|
57 |
+
with open('ensemble_rf_model.pkl', 'rb') as f:
|
58 |
rf_model = pickle.load(f)
|
59 |
+
with open('ensemble_xgb_model.pkl', 'rb') as f:
|
60 |
xgb_model = pickle.load(f)
|
61 |
+
# Load weather trend model
|
62 |
+
with open('wildfire_logistic_model_synthetic.joblib', 'rb') as f:
|
63 |
lr_model = pickle.load(f)
|
64 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
65 |
|
|
|
75 |
}
|
76 |
|
77 |
# --- PIPELINE FUNCTIONS ---
|
78 |
+
|
79 |
def detect_fire(img):
|
80 |
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
81 |
x = vgg_preprocess(x)
|
|
|
90 |
rf_p = rf_model.predict(preds)[0]
|
91 |
xgb_p = xgb_model.predict(preds)[0]
|
92 |
ensemble = int(round((rf_p + xgb_p)/2))
|
93 |
+
return target_map.get(ensemble, 'moderate')
|
94 |
|
95 |
|
96 |
def fetch_weather_trend(lat, lon):
|
|
|
103 |
df = pd.DataFrame(data)
|
104 |
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
105 |
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
106 |
+
df[c] = pd.to_numeric(df.get(c, []), errors='coerce')
|
107 |
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
108 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
109 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
110 |
df['wind_speed'] = df['windspeed_10m_max']
|
111 |
df['fire_risk_score'] = (
|
112 |
+
0.4*(df['temperature']/55) +
|
113 |
+
0.2*(1-df['humidity']/100) +
|
114 |
+
0.3*(df['wind_speed']/60) +
|
115 |
0.1*(1-df['precipitation']/50)
|
116 |
)
|
117 |
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
|
|
136 |
return flash.generate_content(prompt).text
|
137 |
|
138 |
# --- GRADIO INTERFACE ---
|
139 |
+
|
140 |
def pipeline(image):
|
141 |
img = Image.fromarray(image).convert('RGB')
|
142 |
fire, prob = detect_fire(img)
|