Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,8 +18,8 @@ API_URL = (
|
|
18 |
"https://archive-api.open-meteo.com/v1/archive"
|
19 |
"?latitude={lat}&longitude={lon}"
|
20 |
"&start_date={start}&end_date={end}"
|
21 |
-
"&daily=temperature_2m_max,temperature_2m_min,"
|
22 |
-
"precipitation_sum,windspeed_10m_max,"
|
23 |
"relative_humidity_2m_max,relative_humidity_2m_min"
|
24 |
"&timezone=UTC"
|
25 |
)
|
@@ -34,9 +34,10 @@ def load_models():
|
|
34 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
35 |
import tensorflow.keras.backend as K
|
36 |
def loss_fn(y_true, y_pred):
|
37 |
-
eps = K.epsilon()
|
|
|
38 |
ce = -y_true * K.log(y_pred)
|
39 |
-
w = alpha * K.pow(1-y_pred, gamma)
|
40 |
return K.mean(w * ce, axis=-1)
|
41 |
return loss_fn
|
42 |
xce_model = load_model(
|
@@ -96,37 +97,33 @@ def detect_fire(img):
|
|
96 |
print(f"Error in fire detection: {e}")
|
97 |
return False, 0.0
|
98 |
|
99 |
-
|
100 |
def classify_severity(img):
|
101 |
try:
|
102 |
-
if
|
103 |
return 'moderate'
|
104 |
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
105 |
x = xce_preprocess(x)
|
106 |
-
preds =
|
107 |
rf_p = rf_model.predict(preds)[0]
|
108 |
xgb_p = xgb_model.predict(preds)[0]
|
109 |
-
ensemble = int(round((rf_p + xgb_p)/2))
|
110 |
return target_map.get(ensemble, 'moderate')
|
111 |
except Exception as e:
|
112 |
print(f"Error in severity classification: {e}")
|
113 |
return 'moderate'
|
114 |
|
115 |
-
|
116 |
def fetch_weather_trend(lat, lon):
|
117 |
try:
|
118 |
end = datetime.utcnow()
|
119 |
start = end - timedelta(days=1)
|
120 |
-
url = API_URL.format(
|
121 |
-
|
122 |
-
|
123 |
-
end=end.strftime('%Y-%m-%d')
|
124 |
-
)
|
125 |
response = requests.get(url, timeout=5)
|
126 |
-
|
127 |
-
raise Exception(f"API returned status {response.status_code}")
|
128 |
df = pd.DataFrame(response.json().get('daily', {}))
|
129 |
except Exception:
|
|
|
130 |
df = pd.DataFrame({
|
131 |
'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1,-1,-1)],
|
132 |
'precipitation_sum': [5, 2],
|
@@ -136,38 +133,41 @@ def fetch_weather_trend(lat, lon):
|
|
136 |
'relative_humidity_2m_min': [40, 35],
|
137 |
'windspeed_10m_max': [15, 18]
|
138 |
})
|
|
|
139 |
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
140 |
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
141 |
df[c] = pd.to_numeric(df[c], errors='coerce')
|
|
|
142 |
df['precipitation'] = df['precipitation_sum']
|
143 |
-
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
144 |
-
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
145 |
df['wind_speed'] = df['windspeed_10m_max']
|
146 |
df['fire_risk_score'] = (
|
147 |
-
0.4*(df['temperature']/55) +
|
148 |
-
0.2*(1-df['humidity']/100) +
|
149 |
-
0.3*(df['wind_speed']/60) +
|
150 |
-
0.1*(1-df['precipitation']/50)
|
151 |
)
|
152 |
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
|
153 |
if lr_model is not None:
|
154 |
trend_cl = lr_model.predict(feat)[0]
|
155 |
-
return trend_map.get(trend_cl,'same')
|
156 |
return 'same'
|
157 |
|
158 |
-
|
159 |
def generate_recommendations(original_severity, weather_trend):
|
160 |
projected = task_rules[original_severity][weather_trend]
|
161 |
rec = recommendations[projected]
|
162 |
-
return f"**Original Severity:** {original_severity.title()} \
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
171 |
|
172 |
# --- MAIN PIPELINE ---
|
173 |
def pipeline(image):
|
@@ -176,52 +176,74 @@ def pipeline(image):
|
|
176 |
img = Image.fromarray(image).convert('RGB')
|
177 |
fire, prob = detect_fire(img)
|
178 |
if not fire:
|
179 |
-
return (
|
180 |
-
|
|
|
|
|
|
|
181 |
sev = classify_severity(img)
|
182 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
183 |
recs = generate_recommendations(sev, trend)
|
184 |
-
return (
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
188 |
|
189 |
-
# ---
|
190 |
-
vgg_model,
|
191 |
|
192 |
-
# ---
|
193 |
-
custom_css =
|
194 |
-
|
195 |
-
#
|
196 |
-
#
|
197 |
-
|
198 |
-
.gr-button { background: #
|
199 |
-
.
|
200 |
-
|
201 |
-
|
202 |
-
.gr-markdown { color: #2e3440; }
|
203 |
-
"""
|
204 |
|
205 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
208 |
gr.Markdown("# 🔥 Wildfire Command Center", elem_id="main-title")
|
209 |
-
gr.Markdown(
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
run_btn.click(
|
223 |
fn=pipeline,
|
224 |
inputs=image_input,
|
|
|
|
|
|
|
|
|
225 |
outputs=[last_status, last_severity, last_trend, last_recs]
|
226 |
)
|
227 |
|
|
|
18 |
"https://archive-api.open-meteo.com/v1/archive"
|
19 |
"?latitude={lat}&longitude={lon}"
|
20 |
"&start_date={start}&end_date={end}"
|
21 |
+
"&daily=temperature_2m_max,temperature_2m_min,"
|
22 |
+
"precipitation_sum,windspeed_10m_max,"
|
23 |
"relative_humidity_2m_max,relative_humidity_2m_min"
|
24 |
"&timezone=UTC"
|
25 |
)
|
|
|
34 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
35 |
import tensorflow.keras.backend as K
|
36 |
def loss_fn(y_true, y_pred):
|
37 |
+
eps = K.epsilon()
|
38 |
+
y_pred = K.clip(y_pred, eps, 1. - eps)
|
39 |
ce = -y_true * K.log(y_pred)
|
40 |
+
w = alpha * K.pow(1 - y_pred, gamma)
|
41 |
return K.mean(w * ce, axis=-1)
|
42 |
return loss_fn
|
43 |
xce_model = load_model(
|
|
|
97 |
print(f"Error in fire detection: {e}")
|
98 |
return False, 0.0
|
99 |
|
|
|
100 |
def classify_severity(img):
|
101 |
try:
|
102 |
+
if xce_model is None or rf_model is None or xgb_model is None:
|
103 |
return 'moderate'
|
104 |
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
105 |
x = xce_preprocess(x)
|
106 |
+
preds = xce_model.predict(x)
|
107 |
rf_p = rf_model.predict(preds)[0]
|
108 |
xgb_p = xgb_model.predict(preds)[0]
|
109 |
+
ensemble = int(round((rf_p + xgb_p) / 2))
|
110 |
return target_map.get(ensemble, 'moderate')
|
111 |
except Exception as e:
|
112 |
print(f"Error in severity classification: {e}")
|
113 |
return 'moderate'
|
114 |
|
|
|
115 |
def fetch_weather_trend(lat, lon):
|
116 |
try:
|
117 |
end = datetime.utcnow()
|
118 |
start = end - timedelta(days=1)
|
119 |
+
url = API_URL.format(lat=lat, lon=lon,
|
120 |
+
start=start.strftime('%Y-%m-%d'),
|
121 |
+
end=end.strftime('%Y-%m-%d'))
|
|
|
|
|
122 |
response = requests.get(url, timeout=5)
|
123 |
+
response.raise_for_status()
|
|
|
124 |
df = pd.DataFrame(response.json().get('daily', {}))
|
125 |
except Exception:
|
126 |
+
# Fallback sample data
|
127 |
df = pd.DataFrame({
|
128 |
'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1,-1,-1)],
|
129 |
'precipitation_sum': [5, 2],
|
|
|
133 |
'relative_humidity_2m_min': [40, 35],
|
134 |
'windspeed_10m_max': [15, 18]
|
135 |
})
|
136 |
+
# Numeric conversions
|
137 |
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
138 |
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
139 |
df[c] = pd.to_numeric(df[c], errors='coerce')
|
140 |
+
# Feature engineering
|
141 |
df['precipitation'] = df['precipitation_sum']
|
142 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min']) / 2
|
143 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min']) / 2
|
144 |
df['wind_speed'] = df['windspeed_10m_max']
|
145 |
df['fire_risk_score'] = (
|
146 |
+
0.4 * (df['temperature'] / 55) +
|
147 |
+
0.2 * (1 - df['humidity'] / 100) +
|
148 |
+
0.3 * (df['wind_speed'] / 60) +
|
149 |
+
0.1 * (1 - df['precipitation'] / 50)
|
150 |
)
|
151 |
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
|
152 |
if lr_model is not None:
|
153 |
trend_cl = lr_model.predict(feat)[0]
|
154 |
+
return trend_map.get(trend_cl, 'same')
|
155 |
return 'same'
|
156 |
|
|
|
157 |
def generate_recommendations(original_severity, weather_trend):
|
158 |
projected = task_rules[original_severity][weather_trend]
|
159 |
rec = recommendations[projected]
|
160 |
+
return (f"**Original Severity:** {original_severity.title()} \
|
161 |
+
" \
|
162 |
+
f"**Weather Trend:** {weather_trend.title()} \
|
163 |
+
" \
|
164 |
+
f"**Projected Severity:** {projected.title()}\n\n" \
|
165 |
+
"### Management Recommendations:\n" \
|
166 |
+
f"**Immediate:** {rec['immediate']}\n\n" \
|
167 |
+
f"**Evacuation:** {rec['evacuation']}\n\n" \
|
168 |
+
f"**Containment:** {rec['containment']}\n\n" \
|
169 |
+
f"**Prevention:** {rec['prevention']}\n\n" \
|
170 |
+
f"**Education:** {rec['education']}")
|
171 |
|
172 |
# --- MAIN PIPELINE ---
|
173 |
def pipeline(image):
|
|
|
176 |
img = Image.fromarray(image).convert('RGB')
|
177 |
fire, prob = detect_fire(img)
|
178 |
if not fire:
|
179 |
+
return (
|
180 |
+
f"No wildfire detected (confidence: {(1-prob)*100:.1f}%)",
|
181 |
+
"N/A","N/A",
|
182 |
+
"**No wildfire detected. Stay alert.**"
|
183 |
+
)
|
184 |
sev = classify_severity(img)
|
185 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
186 |
recs = generate_recommendations(sev, trend)
|
187 |
+
return (
|
188 |
+
f"**Wildfire detected** (confidence: {prob*100:.1f}%)",
|
189 |
+
f"**{sev.title()}**",
|
190 |
+
f"**{trend.title()}**",
|
191 |
+
recs
|
192 |
+
)
|
193 |
|
194 |
+
# --- GLOBAL MODEL LOADING ---
|
195 |
+
vgg_model, xce_model, rf_model, xgb_model, lr_model = load_models()
|
196 |
|
197 |
+
# --- UI: CUSTOM CSS & GRADIO LAYOUT ---
|
198 |
+
custom_css = '''
|
199 |
+
#header { text-align: center; margin: 0 0 1rem; }
|
200 |
+
#header img { height: 4rem; margin-right: 1rem; }
|
201 |
+
#main-title { font-size: 2.75rem; margin: 0.5rem 0; }
|
202 |
+
#sub-title { font-size: 1.25rem; color: #555; }
|
203 |
+
.gr-button.primary { background: #ff7043 !important; }
|
204 |
+
.output-card { background: #f7f7f7; border-radius: 0.75rem; padding: 1rem;
|
205 |
+
box-shadow: 0 1px 6px rgba(0,0,0,0.1); margin-bottom: 1rem; }
|
206 |
+
'''
|
|
|
|
|
207 |
|
208 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
209 |
+
# Header (add your logo.png in working directory or adjust path)
|
210 |
+
with gr.Row(elem_id="header"):
|
211 |
+
try:
|
212 |
+
gr.Image(value="logo.png", show_label=False)
|
213 |
+
except:
|
214 |
+
pass
|
215 |
+
with gr.Column():
|
216 |
gr.Markdown("# 🔥 Wildfire Command Center", elem_id="main-title")
|
217 |
+
gr.Markdown("Upload a forest image to detect wildfire, classify severity, and get actionable recommendations.", elem_id="sub-title")
|
218 |
+
|
219 |
+
# Tabs: Analyze & Last Analysis
|
220 |
+
with gr.Tabs():
|
221 |
+
with gr.TabItem("Analyze 🔍"):
|
222 |
+
with gr.Row():
|
223 |
+
with gr.Column(scale=1):
|
224 |
+
image_input = gr.Image(type="numpy", label="Forest Image", tool="editor")
|
225 |
+
run_btn = gr.Button("Analyze Now", variant="primary")
|
226 |
+
with gr.Column(scale=1):
|
227 |
+
with gr.Spinner():
|
228 |
+
status_out = gr.Markdown("*Status will appear here*", label="Status")
|
229 |
+
severity_out = gr.Markdown("---", label="Severity")
|
230 |
+
trend_out = gr.Markdown("---", label="Weather Trend")
|
231 |
+
recs_out = gr.Markdown("---", label="Recommendations")
|
232 |
+
|
233 |
+
with gr.TabItem("Last Analysis 📊"):
|
234 |
+
last_status = gr.Markdown("*No analysis yet*", elem_classes="output-card")
|
235 |
+
last_severity = gr.Markdown("---", elem_classes="output-card")
|
236 |
+
last_trend = gr.Markdown("---", elem_classes="output-card")
|
237 |
+
last_recs = gr.Markdown("---", elem_classes="output-card")
|
238 |
+
|
239 |
+
# Bind actions: analyze then archive outputs
|
240 |
run_btn.click(
|
241 |
fn=pipeline,
|
242 |
inputs=image_input,
|
243 |
+
outputs=[status_out, severity_out, trend_out, recs_out]
|
244 |
+
).then(
|
245 |
+
fn=lambda s,sv,tr,rc: (s,sv,tr,rc),
|
246 |
+
inputs=[status_out, severity_out, trend_out, recs_out],
|
247 |
outputs=[last_status, last_severity, last_trend, last_recs]
|
248 |
)
|
249 |
|