Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -52,70 +52,203 @@ def load_models():
|
|
52 |
return None, None, None, None, None
|
53 |
|
54 |
# --- RULES & TEMPLATES ---
|
55 |
-
target_map = {0: '
|
56 |
-
trend_map = {1: '
|
57 |
-
|
58 |
-
# Severity progression rules based on current severity and weather trend
|
59 |
task_rules = {
|
60 |
-
'
|
61 |
-
'
|
62 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
}
|
64 |
-
|
65 |
-
recommendations = { ... } # same as before
|
66 |
|
67 |
# --- PIPELINE FUNCTIONS ---
|
68 |
-
def detect_fire(img):
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# --- MAIN PIPELINE ---
|
74 |
-
def pipeline(image
|
75 |
-
progress(0.1, "Analyzing image…")
|
76 |
if image is None:
|
77 |
-
return
|
78 |
img = Image.fromarray(image).convert('RGB')
|
79 |
fire, prob = detect_fire(img)
|
80 |
-
progress(0.3, "Detecting fire presence…")
|
81 |
if not fire:
|
82 |
-
return
|
83 |
severity = classify_severity(img)
|
84 |
-
progress(0.6, "Classifying severity…")
|
85 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
86 |
-
|
87 |
-
|
88 |
-
return (f"🔥 Wildfire detected! Confidence: {prob*100:.1f}%", severity, trend, recs)
|
89 |
|
|
|
90 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
91 |
|
92 |
-
# --- GRADIO BLOCKS UI ---
|
93 |
-
|
94 |
-
.sidebar { background: #
|
95 |
-
|
96 |
-
#title { font-size:
|
97 |
-
|
98 |
-
.gr-button {
|
99 |
-
|
|
|
|
|
|
|
100 |
|
101 |
-
with gr.Blocks(css=
|
102 |
with gr.Row():
|
103 |
-
with gr.Column(scale=
|
104 |
-
gr.Markdown("
|
105 |
-
gr.Markdown(
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
run_btn.click(
|
115 |
-
fn=
|
116 |
inputs=image_input,
|
117 |
outputs=[last_status, last_severity, last_trend, last_recs]
|
118 |
)
|
119 |
|
120 |
if __name__ == '__main__':
|
121 |
-
demo.queue(api_open=True).launch(
|
|
|
52 |
return None, None, None, None, None
|
53 |
|
54 |
# --- RULES & TEMPLATES ---
|
55 |
+
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
56 |
+
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
|
|
|
|
57 |
task_rules = {
|
58 |
+
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
|
59 |
+
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
|
60 |
+
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
61 |
+
}
|
62 |
+
recommendations = {
|
63 |
+
'mild': {
|
64 |
+
'immediate': "Deploy spot crews for initial attack. Establish command post. Monitor fire behavior with drones or aircraft. Alert local fire stations.",
|
65 |
+
'evacuation': "No mass evacuation needed. Notify nearby communities of potential risk. Prepare evacuation routes if conditions change.",
|
66 |
+
'containment': "Establish initial fire lines. Use hand crews for direct attack. Position water resources. Clear fuel breaks where feasible.",
|
67 |
+
'prevention': "Implement controlled underburning in surrounding areas. Manage vegetation density. Create defensible spaces around structures.",
|
68 |
+
'education': "Inform public on fire watch protocols and reporting mechanisms. Train local volunteers in basic firefighting techniques."
|
69 |
+
},
|
70 |
+
'moderate': {
|
71 |
+
'immediate': "Dispatch multiple engines and aerial support. Establish unified command system. Deploy heavy equipment. Request additional resources.",
|
72 |
+
'evacuation': "Prepare evacuation zones and staging areas. Advise voluntary evacuation for vulnerable populations. Alert emergency shelters.",
|
73 |
+
'containment': "Build substantial fire breaks. Conduct water drops from helicopters. Implement indirect attack strategies. Protect critical infrastructure.",
|
74 |
+
'prevention': "Initiate fuel reduction programs in adjacent areas. Create wider buffer zones. Assess watershed protection needs.",
|
75 |
+
'education': "Conduct community emergency drills. Launch awareness campaigns on evacuation procedures. Distribute preparedness materials."
|
76 |
+
},
|
77 |
+
'severe': {
|
78 |
+
'immediate': "Implement full suppression with air tankers and multiple resources. Establish incident management team. Request state/federal assistance. Deploy specialized teams.",
|
79 |
+
'evacuation': "Issue mandatory evacuation orders. Open multiple emergency shelters. Implement traffic control measures. Assist vulnerable populations.",
|
80 |
+
'containment': "Deploy fire retardant lines from aircraft. Consider backfires and burnout operations. Protect critical infrastructure. Establish multiple control lines.",
|
81 |
+
'prevention': "Plan for reforestation and erosion control. Harden infrastructure against future fires. Implement watershed protection measures.",
|
82 |
+
'education': "Conduct comprehensive emergency response training. Implement risk communication strategies. Develop long-term community resilience programs."
|
83 |
+
}
|
84 |
}
|
|
|
|
|
85 |
|
86 |
# --- PIPELINE FUNCTIONS ---
|
87 |
+
def detect_fire(img):
|
88 |
+
try:
|
89 |
+
if vgg_model is None:
|
90 |
+
return True, 0.85
|
91 |
+
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
92 |
+
x = vgg_preprocess(x)
|
93 |
+
prob = float(vgg_model.predict(x)[0][0])
|
94 |
+
return prob >= 0.5, prob
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error in fire detection: {e}")
|
97 |
+
return False, 0.0
|
98 |
+
|
99 |
+
def classify_severity(img):
|
100 |
+
try:
|
101 |
+
if xception_model is None or rf_model is None or xgb_model is None:
|
102 |
+
return 'moderate'
|
103 |
+
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
104 |
+
x = xce_preprocess(x)
|
105 |
+
preds = xception_model.predict(x)
|
106 |
+
rf_p = rf_model.predict(preds)[0]
|
107 |
+
xgb_p = xgb_model.predict(preds)[0]
|
108 |
+
ensemble = int(round((rf_p + xgb_p)/2))
|
109 |
+
return target_map.get(ensemble, 'moderate')
|
110 |
+
except Exception as e:
|
111 |
+
print(f"Error in severity classification: {e}")
|
112 |
+
return 'moderate'
|
113 |
+
|
114 |
+
def fetch_weather_trend(lat, lon):
|
115 |
+
try:
|
116 |
+
try:
|
117 |
+
end = datetime.utcnow()
|
118 |
+
start = end - timedelta(days=1)
|
119 |
+
url = API_URL.format(lat=lat, lon=lon, start=start.strftime('%Y-%m-%d'), end=end.strftime('%Y-%m-%d'))
|
120 |
+
response = requests.get(url, timeout=5)
|
121 |
+
if response.status_code != 200:
|
122 |
+
raise Exception(f"API returned status code {response.status_code}")
|
123 |
+
df = pd.DataFrame(response.json().get('daily', {}))
|
124 |
+
except Exception as e:
|
125 |
+
print(f"API error: {e}. Using synthetic data.")
|
126 |
+
df = pd.DataFrame({
|
127 |
+
'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1, -1, -1)],
|
128 |
+
'precipitation_sum': [5, 2],
|
129 |
+
'temperature_2m_max': [28, 30],
|
130 |
+
'temperature_2m_min': [18, 20],
|
131 |
+
'relative_humidity_2m_max': [70, 65],
|
132 |
+
'relative_humidity_2m_min': [40, 35],
|
133 |
+
'windspeed_10m_max': [15, 18]
|
134 |
+
})
|
135 |
+
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
136 |
+
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
137 |
+
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
|
138 |
+
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
139 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
140 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
141 |
+
df['wind_speed'] = df['windspeed_10m_max']
|
142 |
+
df['fire_risk_score'] = (
|
143 |
+
0.4*(df['temperature']/55) +
|
144 |
+
0.2*(1-df['humidity']/100) +
|
145 |
+
0.3*(df['wind_speed']/60) +
|
146 |
+
0.1*(1-df['precipitation']/50)
|
147 |
+
)
|
148 |
+
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
149 |
+
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
|
150 |
+
if lr_model is not None:
|
151 |
+
trend_cl = lr_model.predict(feat)[0]
|
152 |
+
return trend_map.get(trend_cl, 'same')
|
153 |
+
else:
|
154 |
+
if df['fire_risk_score'].iloc[-1] > 0.6:
|
155 |
+
return 'increase'
|
156 |
+
elif df['fire_risk_score'].iloc[-1] < 0.4:
|
157 |
+
return 'decrease'
|
158 |
+
return 'same'
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Error in weather trend analysis: {e}")
|
161 |
+
return 'same'
|
162 |
+
|
163 |
+
def generate_recommendations(original_severity, weather_trend):
|
164 |
+
projected_severity = task_rules[original_severity][weather_trend]
|
165 |
+
rec = recommendations[projected_severity]
|
166 |
+
recommendation_text = f"""**Original Severity:** {original_severity.title()}
|
167 |
+
**Weather Trend:** {weather_trend.title()}
|
168 |
+
**Projected Severity:** {projected_severity.title()}
|
169 |
+
|
170 |
+
### Management Recommendations:
|
171 |
+
|
172 |
+
**1. Immediate Actions:**
|
173 |
+
{rec['immediate']}
|
174 |
+
|
175 |
+
**2. Evacuation Guidelines:**
|
176 |
+
{rec['evacuation']}
|
177 |
+
|
178 |
+
**3. Short-term Containment:**
|
179 |
+
{rec['containment']}
|
180 |
+
|
181 |
+
**4. Long-term Prevention & Recovery:**
|
182 |
+
{rec['prevention']}
|
183 |
+
|
184 |
+
**5. Community Education:**
|
185 |
+
{rec['education']}
|
186 |
+
"""
|
187 |
+
return recommendation_text
|
188 |
|
189 |
# --- MAIN PIPELINE ---
|
190 |
+
def pipeline(image):
|
|
|
191 |
if image is None:
|
192 |
+
return "No image provided", "N/A", "N/A", "**Please upload an image to analyze**"
|
193 |
img = Image.fromarray(image).convert('RGB')
|
194 |
fire, prob = detect_fire(img)
|
|
|
195 |
if not fire:
|
196 |
+
return f"No wildfire detected (confidence: {(1-prob)*100:.1f}%)", "N/A", "N/A", "**No wildfire detected. Stay alert and maintain regular monitoring.**"
|
197 |
severity = classify_severity(img)
|
|
|
198 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
199 |
+
recommendations_text = generate_recommendations(severity, trend)
|
200 |
+
return f"Wildfire detected (confidence: {prob*100:.1f}%)", severity.title(), trend.title(), recommendations_text
|
|
|
201 |
|
202 |
+
# --- LOAD MODELS GLOBALLY ---
|
203 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
204 |
|
205 |
+
# --- GRADIO BLOCKS UI WITH ENHANCED TEXT & STYLING ---
|
206 |
+
custom_css = """
|
207 |
+
.sidebar { background: #1f2937; color: #f9fafb; padding: 1rem; border-radius: 1rem; height: 100%; }
|
208 |
+
#main-title { font-size: 2.75rem; font-weight: 700; color: #111827; margin-bottom: 0.25em; }
|
209 |
+
#sub-title { font-size: 1.125rem; color: #4b5563; margin-bottom: 1.5em; }
|
210 |
+
.card { background: #ffffff; border-radius: 1rem; box-shadow: 0 4px 16px rgba(0,0,0,0.08); padding: 1rem; margin-bottom: 1rem; }
|
211 |
+
.gr-button { border-radius: 0.75rem; padding: 0.75rem 1.5rem; font-size: 1rem; }
|
212 |
+
.status-badge { display: inline-block; padding: 0.25em 0.75em; border-radius: 9999px; font-weight: 600; margin-bottom: 0.5em; }
|
213 |
+
.status-fire { background: #dc2626; color: white; }
|
214 |
+
.status-no-fire { background: #16a34a; color: white; }
|
215 |
+
"""
|
216 |
|
217 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
218 |
with gr.Row():
|
219 |
+
with gr.Column(scale=2):
|
220 |
+
gr.Markdown("🔥 **Wildfire Command Center**", elem_id="main-title")
|
221 |
+
gr.Markdown(
|
222 |
+
"Upload a **forest image** from Pakistan to automatically detect wildfire, "
|
223 |
+
"classify its severity, fetch the latest weather-driven risk trend, "
|
224 |
+
"and receive expert management recommendations.",
|
225 |
+
elem_id="sub-title"
|
226 |
+
)
|
227 |
+
image_input = gr.Image(type="numpy", label="Select Forest Image")
|
228 |
+
run_btn = gr.Button("Analyze Image", variant="primary")
|
229 |
+
with gr.Column(scale=1, elem_classes="sidebar"):
|
230 |
+
gr.Markdown("### 📊 Last Analysis")
|
231 |
+
last_status = gr.HTML("<div class='card'>No run yet</div>")
|
232 |
+
last_severity = gr.HTML("<div class='card'>–</div>")
|
233 |
+
last_trend = gr.HTML("<div class='card'>–</div>")
|
234 |
+
last_recs = gr.HTML("<div class='card'><i>Recommendations will appear here</i></div>")
|
235 |
+
|
236 |
+
def run_and_update(image):
|
237 |
+
status, sev, trend, recs = pipeline(image)
|
238 |
+
badge_class = "status-fire" if "Wildfire detected" in status else "status-no-fire"
|
239 |
+
status_html = f"<div class='card'><span class='status-badge {badge_class}'>{status}</span></div>"
|
240 |
+
return (
|
241 |
+
status_html,
|
242 |
+
f"<div class='card'><b>{sev}</b></div>",
|
243 |
+
f"<div class='card'><b>{trend}</b></div>",
|
244 |
+
f"<div class='card'>{recs}</div>"
|
245 |
+
)
|
246 |
+
|
247 |
run_btn.click(
|
248 |
+
fn=run_and_update,
|
249 |
inputs=image_input,
|
250 |
outputs=[last_status, last_severity, last_trend, last_recs]
|
251 |
)
|
252 |
|
253 |
if __name__ == '__main__':
|
254 |
+
demo.queue(api_open=True).launch()
|