Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import requests
|
3 |
import pandas as pd
|
@@ -26,45 +28,39 @@ API_URL = (
|
|
26 |
|
27 |
# --- LOAD MODELS ---
|
28 |
def load_models():
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
53 |
-
except Exception as e:
|
54 |
-
raise gr.Error(f"Model loading failed: {str(e)}")
|
55 |
|
56 |
-
|
57 |
-
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Initial model loading failed: {str(e)}")
|
60 |
|
61 |
# --- RULES & TEMPLATES ---
|
62 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
63 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
64 |
task_rules = {
|
65 |
-
'mild': {'decrease':
|
66 |
-
'moderate':
|
67 |
-
'severe': {'decrease':
|
68 |
}
|
69 |
templates = {
|
70 |
'mild': (
|
@@ -90,138 +86,83 @@ templates = {
|
|
90 |
)
|
91 |
}
|
92 |
|
93 |
-
# --- FUNCTIONS ---
|
94 |
def detect_fire(img):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
pred = vgg_model.predict(arr)[0][0]
|
100 |
-
is_fire = pred >= 0.5
|
101 |
-
return is_fire, pred
|
102 |
-
|
103 |
-
def classify_severity(img):
|
104 |
-
img_resized = img.resize((224, 224))
|
105 |
-
arr = keras_image.img_to_array(img_resized)
|
106 |
-
arr = np.expand_dims(arr, axis=0)
|
107 |
-
arr = xce_preprocess(arr)
|
108 |
-
feat = np.squeeze(arr)
|
109 |
-
feat_flat = feat.flatten().reshape(1, -1)
|
110 |
-
|
111 |
-
rf_pred = rf_model.predict_proba(feat_flat)
|
112 |
-
xgb_pred = xgb_model.predict_proba(feat_flat)
|
113 |
-
avg_pred = (rf_pred + xgb_pred) / 2
|
114 |
-
final_class = np.argmax(avg_pred)
|
115 |
-
return target_map[final_class]
|
116 |
|
117 |
-
def fetch_weather_trend(lat, lon):
|
118 |
-
today = datetime.utcnow().date()
|
119 |
-
start_date = today - timedelta(days=2)
|
120 |
-
end_date = today - timedelta(days=1)
|
121 |
-
|
122 |
-
url = API_URL.format(lat=lat, lon=lon, start=start_date, end=end_date)
|
123 |
-
response = requests.get(url)
|
124 |
-
if response.status_code != 200:
|
125 |
-
return 'same' # fallback if API fails
|
126 |
-
|
127 |
-
data = response.json()
|
128 |
-
temp_max = data['daily']['temperature_2m_max']
|
129 |
-
wind_max = data['daily']['windspeed_10m_max']
|
130 |
-
humidity_min = data['daily']['relative_humidity_2m_min']
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
overall_trend = temp_trend + wind_trend + humidity_trend
|
138 |
-
if overall_trend > 0:
|
139 |
-
return 'increase'
|
140 |
-
elif overall_trend < 0:
|
141 |
-
return 'decrease'
|
142 |
-
else:
|
143 |
-
return 'same'
|
144 |
|
145 |
-
def
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
)
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
def pipeline(image):
|
158 |
img = Image.fromarray(image).convert('RGB')
|
159 |
fire, prob = detect_fire(img)
|
160 |
if not fire:
|
161 |
-
return (
|
162 |
-
f"**No wildfire detected** (probability={prob:.2f})",
|
163 |
-
"N/A",
|
164 |
-
"N/A",
|
165 |
-
"There is currently no sign of wildfire in the image. Continue normal monitoring."
|
166 |
-
)
|
167 |
sev = classify_severity(img)
|
168 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
169 |
recs = generate_recommendations(sev, trend)
|
170 |
-
return (
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
.
|
183 |
-
|
184 |
-
border-radius: 12px !important;
|
185 |
-
padding: 20px !important;
|
186 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
187 |
-
}
|
188 |
-
.status-box {
|
189 |
-
background: #fff3e6 !important;
|
190 |
-
border: 1px solid #ffd8b3 !important;
|
191 |
-
}
|
192 |
-
.dark-red { color: #cc0000 !important; }
|
193 |
-
.green { color: #008000 !important; }
|
194 |
-
"""
|
195 |
-
|
196 |
-
with gr.Blocks(css=custom_css) as demo:
|
197 |
-
gr.Markdown("# 🔥 Wildfire Detection & Management Assistant")
|
198 |
-
|
199 |
-
with gr.Row(variant="panel"):
|
200 |
-
with gr.Column(scale=2):
|
201 |
-
inp = gr.Image(type="numpy", label="Satellite Image", elem_id="upload-wildfire-image")
|
202 |
-
with gr.Column(scale=1):
|
203 |
-
status = gr.Textbox(label="Fire Status", interactive=False, elem_classes="status-box")
|
204 |
-
severity = gr.Textbox(label="Severity Level", interactive=False)
|
205 |
-
trend = gr.Textbox(label="Weather Trend", interactive=False)
|
206 |
-
|
207 |
-
with gr.Accordion("📋 Detailed Recommendations", open=False):
|
208 |
-
rec_box = gr.Markdown()
|
209 |
-
|
210 |
-
btn = gr.Button("Analyze", variant="primary")
|
211 |
-
btn.click(
|
212 |
-
fn=pipeline,
|
213 |
-
inputs=inp,
|
214 |
-
outputs=[status, severity, trend, rec_box],
|
215 |
-
api_name="analyze"
|
216 |
-
)
|
217 |
-
|
218 |
-
gr.Markdown("---")
|
219 |
-
gr.HTML("<div style='text-align: center; color: #666;'>© 2025 ForestAI Labs</div>")
|
220 |
-
|
221 |
-
def handle_errors(inputs, outputs):
|
222 |
-
for output in outputs:
|
223 |
-
if isinstance(output, Exception):
|
224 |
-
raise gr.Error("Analysis failed. Please check the input and try again.")
|
225 |
|
226 |
-
if __name__ ==
|
227 |
-
|
|
|
1 |
+
improve the text in the rcommendation, display each point on next line and improve the UI a little bit
|
2 |
+
|
3 |
import os
|
4 |
import requests
|
5 |
import pandas as pd
|
|
|
28 |
|
29 |
# --- LOAD MODELS ---
|
30 |
def load_models():
|
31 |
+
# Fire detector (VGG16)
|
32 |
+
vgg_model = load_model(
|
33 |
+
'vgg16_focal_unfreeze_more.keras',
|
34 |
+
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
35 |
+
)
|
36 |
+
# Severity classifier (Xception)
|
37 |
+
def focal_loss_fixed(gamma=2., alpha=.25):
|
38 |
+
import tensorflow.keras.backend as K
|
39 |
+
def loss_fn(y_true, y_pred):
|
40 |
+
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
|
41 |
+
ce = -y_true * K.log(y_pred)
|
42 |
+
w = alpha * K.pow(1-y_pred, gamma)
|
43 |
+
return K.mean(w * ce, axis=-1)
|
44 |
+
return loss_fn
|
45 |
+
xce_model = load_model(
|
46 |
+
'severity_post_tta.keras',
|
47 |
+
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
48 |
+
)
|
49 |
+
# Ensemble and trend models
|
50 |
+
rf_model = joblib.load('ensemble_rf_model.pkl')
|
51 |
+
xgb_model = joblib.load('ensemble_xgb_model.pkl')
|
52 |
+
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
|
53 |
+
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
|
|
|
|
|
|
54 |
|
55 |
+
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
|
|
|
|
|
|
56 |
|
57 |
# --- RULES & TEMPLATES ---
|
58 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
59 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
60 |
task_rules = {
|
61 |
+
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
|
62 |
+
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
|
63 |
+
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
64 |
}
|
65 |
templates = {
|
66 |
'mild': (
|
|
|
86 |
)
|
87 |
}
|
88 |
|
89 |
+
# --- PIPELINE FUNCTIONS ---
|
90 |
def detect_fire(img):
|
91 |
+
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
92 |
+
x = vgg_preprocess(x)
|
93 |
+
prob = float(vgg_model.predict(x)[0][0])
|
94 |
+
return prob >= 0.5, prob
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
def classify_severity(img):
|
98 |
+
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
99 |
+
x = xce_preprocess(x)
|
100 |
+
preds = xception_model.predict(x)
|
101 |
+
rf_p = rf_model.predict(preds)[0]
|
102 |
+
xgb_p = xgb_model.predict(preds)[0]
|
103 |
+
ensemble = int(round((rf_p + xgb_p)/2))
|
104 |
+
return target_map.get(ensemble, 'moderate')
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
def fetch_weather_trend(lat, lon):
|
108 |
+
end = datetime.utcnow()
|
109 |
+
start = end - timedelta(days=1)
|
110 |
+
url = API_URL.format(lat=lat, lon=lon,
|
111 |
+
start=start.strftime('%Y-%m-%d'),
|
112 |
+
end=end.strftime('%Y-%m-%d'))
|
113 |
+
df = pd.DataFrame(requests.get(url).json().get('daily', {}))
|
114 |
+
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
115 |
+
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
116 |
+
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
|
117 |
+
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
118 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
119 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
120 |
+
df['wind_speed'] = df['windspeed_10m_max']
|
121 |
+
df['fire_risk_score'] = (
|
122 |
+
0.4*(df['temperature']/55) +
|
123 |
+
0.2*(1-df['humidity']/100) +
|
124 |
+
0.3*(df['wind_speed']/60) +
|
125 |
+
0.1*(1-df['precipitation']/50)
|
126 |
)
|
127 |
+
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
128 |
+
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
|
129 |
+
trend_cl = lr_model.predict(feat)[0]
|
130 |
+
return trend_map.get(trend_cl, 'same')
|
131 |
+
|
132 |
+
|
133 |
+
def generate_recommendations(original_severity, weather_trend):
|
134 |
+
# determine projected severity
|
135 |
+
proj = task_rules[original_severity][weather_trend]
|
136 |
+
rec = templates[proj]
|
137 |
+
# proper multi-line header
|
138 |
+
header = f"""**Original:** {original_severity.title()}
|
139 |
+
**Trend:** {weather_trend.title()}
|
140 |
+
**Projected:** {proj.title()}\n\n"""
|
141 |
+
return header + rec
|
142 |
+
|
143 |
+
# --- GRADIO INTERFACE ---
|
144 |
def pipeline(image):
|
145 |
img = Image.fromarray(image).convert('RGB')
|
146 |
fire, prob = detect_fire(img)
|
147 |
if not fire:
|
148 |
+
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
|
|
|
|
|
|
|
|
|
|
|
149 |
sev = classify_severity(img)
|
150 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
151 |
recs = generate_recommendations(sev, trend)
|
152 |
+
return f"Fire Detected (prob={prob:.2f})", sev.title(), trend, recs
|
153 |
+
|
154 |
+
interface = gr.Interface(
|
155 |
+
fn=pipeline,
|
156 |
+
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
|
157 |
+
outputs=[
|
158 |
+
gr.Textbox(label='Fire Status'),
|
159 |
+
gr.Textbox(label='Severity Level'),
|
160 |
+
gr.Textbox(label='Weather Trend'),
|
161 |
+
gr.Markdown(label='Recommendations')
|
162 |
+
],
|
163 |
+
title='Wildfire Detection & Management Assistant',
|
164 |
+
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, projection, and get expert recommendations.'
|
165 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
if __name__ == '__main__':
|
168 |
+
interface.launch()
|