Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import requests
|
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
import joblib
|
6 |
-
import google.generativeai as genai
|
7 |
import gradio as gr
|
8 |
from datetime import datetime, timedelta
|
9 |
from tensorflow.keras.models import load_model
|
@@ -25,131 +24,128 @@ API_URL = (
|
|
25 |
"&timezone=UTC"
|
26 |
)
|
27 |
|
28 |
-
# --- GEMINI SETUP ---
|
29 |
-
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
|
30 |
-
if not GOOGLE_API_KEY:
|
31 |
-
raise ValueError("Missing GOOGLE_API_KEY environment variable")
|
32 |
-
genai.configure(api_key=GOOGLE_API_KEY)
|
33 |
-
flash = genai.GenerativeModel('gemini-1.5-pro')
|
34 |
-
|
35 |
# --- LOAD MODELS ---
|
36 |
def load_models():
|
37 |
-
#
|
38 |
vgg_model = load_model(
|
39 |
'vgg16_focal_unfreeze_more.keras',
|
40 |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
41 |
)
|
42 |
-
|
43 |
-
# Load Xception severity classifier
|
44 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
45 |
import tensorflow.keras.backend as K
|
46 |
def loss_fn(y_true, y_pred):
|
47 |
-
eps = K.epsilon()
|
48 |
-
y_pred = K.clip(y_pred, eps, 1. - eps)
|
49 |
ce = -y_true * K.log(y_pred)
|
50 |
-
|
51 |
-
return K.mean(
|
52 |
return loss_fn
|
53 |
-
|
54 |
xce_model = load_model(
|
55 |
'severity_post_tta.keras',
|
56 |
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
57 |
)
|
58 |
-
|
59 |
-
# Load ensemble models correctly with joblib
|
60 |
rf_model = joblib.load('ensemble_rf_model.pkl')
|
61 |
xgb_model = joblib.load('ensemble_xgb_model.pkl')
|
62 |
-
|
63 |
-
# Load weather trend model
|
64 |
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
|
65 |
-
|
66 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
67 |
|
68 |
-
# Load all models
|
69 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
70 |
|
71 |
-
# ---
|
72 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
73 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# --- PIPELINE FUNCTIONS ---
|
76 |
-
|
77 |
def detect_fire(img):
|
78 |
-
x = keras_image.img_to_array(img.resize((128,
|
79 |
x = vgg_preprocess(x)
|
80 |
prob = float(vgg_model.predict(x)[0][0])
|
81 |
return prob >= 0.5, prob
|
82 |
|
|
|
83 |
def classify_severity(img):
|
84 |
-
x = keras_image.img_to_array(img.resize((224,
|
85 |
x = xce_preprocess(x)
|
86 |
preds = xception_model.predict(x)
|
87 |
rf_p = rf_model.predict(preds)[0]
|
88 |
xgb_p = xgb_model.predict(preds)[0]
|
89 |
-
ensemble = int(round((rf_p + xgb_p)
|
90 |
return target_map.get(ensemble, 'moderate')
|
91 |
|
|
|
92 |
def fetch_weather_trend(lat, lon):
|
93 |
end = datetime.utcnow()
|
94 |
start = end - timedelta(days=1)
|
95 |
-
url = API_URL.format(
|
96 |
-
|
97 |
-
|
98 |
-
end=end.strftime('%Y-%m-%d')
|
99 |
-
)
|
100 |
data = requests.get(url).json().get('daily', {})
|
101 |
df = pd.DataFrame(data)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
df[c] = pd.to_numeric(df.get(c, []), errors='coerce')
|
106 |
-
|
107 |
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
108 |
-
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])
|
109 |
-
df['humidity']
|
110 |
-
df['wind_speed']
|
111 |
-
|
112 |
df['fire_risk_score'] = (
|
113 |
-
0.4
|
114 |
-
0.2
|
115 |
-
0.3
|
116 |
-
0.1
|
117 |
)
|
118 |
-
|
119 |
-
|
120 |
-
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1, -1)
|
121 |
-
|
122 |
trend_cl = lr_model.predict(feat)[0]
|
123 |
return trend_map.get(trend_cl, 'same')
|
124 |
|
125 |
-
def generate_recommendations(wildfire_present, severity, weather_trend):
|
126 |
-
prompt = f"""
|
127 |
-
You are a wildfire management expert.
|
128 |
-
- Wildfire Present: {wildfire_present}
|
129 |
-
- Severity: {severity}
|
130 |
-
- Weather Trend: {weather_trend}
|
131 |
-
Provide:
|
132 |
-
1. Immediate actions
|
133 |
-
2. Evacuation guidelines
|
134 |
-
3. Short-term containment
|
135 |
-
4. Long-term prevention & recovery
|
136 |
-
5. Community education
|
137 |
-
"""
|
138 |
-
return flash.generate_content(prompt).text
|
139 |
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
142 |
def pipeline(image):
|
143 |
img = Image.fromarray(image).convert('RGB')
|
144 |
fire, prob = detect_fire(img)
|
145 |
if not fire:
|
146 |
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
|
147 |
-
|
148 |
-
severity = classify_severity(img)
|
149 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
150 |
-
recs = generate_recommendations(
|
151 |
-
|
152 |
-
return f"Fire Detected (prob={prob:.2f})", severity.title(), trend, recs
|
153 |
|
154 |
interface = gr.Interface(
|
155 |
fn=pipeline,
|
@@ -161,7 +157,7 @@ interface = gr.Interface(
|
|
161 |
gr.Markdown(label='Recommendations')
|
162 |
],
|
163 |
title='Wildfire Detection & Management Assistant',
|
164 |
-
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert recommendations.'
|
165 |
)
|
166 |
|
167 |
if __name__ == '__main__':
|
|
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
import joblib
|
|
|
6 |
import gradio as gr
|
7 |
from datetime import datetime, timedelta
|
8 |
from tensorflow.keras.models import load_model
|
|
|
24 |
"&timezone=UTC"
|
25 |
)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# --- LOAD MODELS ---
|
28 |
def load_models():
|
29 |
+
# Fire detector (VGG16)
|
30 |
vgg_model = load_model(
|
31 |
'vgg16_focal_unfreeze_more.keras',
|
32 |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
33 |
)
|
34 |
+
# Severity classifier (Xception)
|
|
|
35 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
36 |
import tensorflow.keras.backend as K
|
37 |
def loss_fn(y_true, y_pred):
|
38 |
+
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
|
|
|
39 |
ce = -y_true * K.log(y_pred)
|
40 |
+
w = alpha * K.pow(1-y_pred, gamma)
|
41 |
+
return K.mean(w * ce, axis=-1)
|
42 |
return loss_fn
|
|
|
43 |
xce_model = load_model(
|
44 |
'severity_post_tta.keras',
|
45 |
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
46 |
)
|
|
|
|
|
47 |
rf_model = joblib.load('ensemble_rf_model.pkl')
|
48 |
xgb_model = joblib.load('ensemble_xgb_model.pkl')
|
|
|
|
|
49 |
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
|
|
|
50 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
51 |
|
|
|
52 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
53 |
|
54 |
+
# --- RULES & TEMPLATES ---
|
55 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
56 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
57 |
+
# severity transition rules
|
58 |
+
task_rules = {
|
59 |
+
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
|
60 |
+
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
|
61 |
+
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
62 |
+
}
|
63 |
+
# static recommendation templates per severity
|
64 |
+
templates = {
|
65 |
+
'mild': (
|
66 |
+
"**1. Immediate actions:** Monitor fire; deploy spot crews.\n"
|
67 |
+
"**2. Evacuation:** No mass evacuation; notify nearby communities.\n"
|
68 |
+
"**3. Short-term containment:** Establish fire lines.\n"
|
69 |
+
"**4. Long-term prevention:** Controlled underburning; vegetation management.\n"
|
70 |
+
"**5. Education:** Inform public on firewatch and reporting." ),
|
71 |
+
'moderate': (
|
72 |
+
"**1. Immediate actions:** Dispatch engines and aerial support.\n"
|
73 |
+
"**2. Evacuation:** Prepare evacuation zones; advise voluntary evacuation.\n"
|
74 |
+
"**3. Short-term containment:** Build fire breaks; water drops.\n"
|
75 |
+
"**4. Long-term prevention:** Fuel reduction programs.\n"
|
76 |
+
"**5. Education:** Community drills and awareness campaigns." ),
|
77 |
+
'severe': (
|
78 |
+
"**1. Immediate actions:** Full suppression with air tankers.\n"
|
79 |
+
"**2. Evacuation:** Mandatory evacuation; open shelters.\n"
|
80 |
+
"**3. Short-term containment:** Fire retardant lines; backfires.\n"
|
81 |
+
"**4. Long-term prevention:** Reforestation; infrastructure hardening.\n"
|
82 |
+
"**5. Education:** Emergency response training; risk communication." )
|
83 |
+
}
|
84 |
|
85 |
# --- PIPELINE FUNCTIONS ---
|
|
|
86 |
def detect_fire(img):
|
87 |
+
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
88 |
x = vgg_preprocess(x)
|
89 |
prob = float(vgg_model.predict(x)[0][0])
|
90 |
return prob >= 0.5, prob
|
91 |
|
92 |
+
|
93 |
def classify_severity(img):
|
94 |
+
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
95 |
x = xce_preprocess(x)
|
96 |
preds = xception_model.predict(x)
|
97 |
rf_p = rf_model.predict(preds)[0]
|
98 |
xgb_p = xgb_model.predict(preds)[0]
|
99 |
+
ensemble = int(round((rf_p + xgb_p)/2))
|
100 |
return target_map.get(ensemble, 'moderate')
|
101 |
|
102 |
+
|
103 |
def fetch_weather_trend(lat, lon):
|
104 |
end = datetime.utcnow()
|
105 |
start = end - timedelta(days=1)
|
106 |
+
url = API_URL.format(lat=lat, lon=lon,
|
107 |
+
start=start.strftime('%Y-%m-%d'),
|
108 |
+
end=end.strftime('%Y-%m-%d'))
|
|
|
|
|
109 |
data = requests.get(url).json().get('daily', {})
|
110 |
df = pd.DataFrame(data)
|
111 |
+
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
112 |
+
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
113 |
+
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
|
|
|
|
|
114 |
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
115 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
116 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
117 |
+
df['wind_speed'] = df['windspeed_10m_max']
|
|
|
118 |
df['fire_risk_score'] = (
|
119 |
+
0.4*(df['temperature']/55) +
|
120 |
+
0.2*(1-df['humidity']/100) +
|
121 |
+
0.3*(df['wind_speed']/60) +
|
122 |
+
0.1*(1-df['precipitation']/50)
|
123 |
)
|
124 |
+
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
125 |
+
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
|
|
|
|
|
126 |
trend_cl = lr_model.predict(feat)[0]
|
127 |
return trend_map.get(trend_cl, 'same')
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
def generate_recommendations(original_severity, weather_trend):
|
131 |
+
# determine projected severity
|
132 |
+
proj = task_rules[original_severity][weather_trend]
|
133 |
+
rec = templates[proj]
|
134 |
+
header = f"**Original:** {original_severity.title()}
|
135 |
+
**Trend:** {weather_trend.title()}
|
136 |
+
**Projected:** {proj.title()}\n\n"
|
137 |
+
return header + rec
|
138 |
|
139 |
+
# --- GRADIO INTERFACE ---
|
140 |
def pipeline(image):
|
141 |
img = Image.fromarray(image).convert('RGB')
|
142 |
fire, prob = detect_fire(img)
|
143 |
if not fire:
|
144 |
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
|
145 |
+
sev = classify_severity(img)
|
|
|
146 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
147 |
+
recs = generate_recommendations(sev, trend)
|
148 |
+
return f"Fire Detected (prob={prob:.2f})", sev.title(), trend, recs
|
|
|
149 |
|
150 |
interface = gr.Interface(
|
151 |
fn=pipeline,
|
|
|
157 |
gr.Markdown(label='Recommendations')
|
158 |
],
|
159 |
title='Wildfire Detection & Management Assistant',
|
160 |
+
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, projection, and get expert recommendations.'
|
161 |
)
|
162 |
|
163 |
if __name__ == '__main__':
|