Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,141 +26,247 @@ API_URL = (
|
|
26 |
|
27 |
# --- LOAD MODELS ---
|
28 |
def load_models():
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
54 |
|
55 |
# --- RULES & TEMPLATES ---
|
|
|
56 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
57 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
|
|
|
|
58 |
task_rules = {
|
59 |
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
|
60 |
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
|
61 |
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
62 |
}
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
"
|
68 |
-
"
|
69 |
-
"
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
"
|
75 |
-
"
|
76 |
-
"
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
"
|
82 |
-
"
|
83 |
-
"
|
84 |
-
|
|
|
|
|
85 |
}
|
86 |
|
87 |
# --- PIPELINE FUNCTIONS ---
|
88 |
def detect_fire(img):
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def classify_severity(img):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
def fetch_weather_trend(lat, lon):
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
def generate_recommendations(original_severity, weather_trend):
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
140 |
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
def pipeline(image):
|
|
|
|
|
|
|
|
|
|
|
143 |
img = Image.fromarray(image).convert('RGB')
|
|
|
|
|
144 |
fire, prob = detect_fire(img)
|
145 |
if not fire:
|
146 |
-
return f"No wildfire detected (
|
147 |
-
|
|
|
|
|
|
|
|
|
148 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
|
|
152 |
interface = gr.Interface(
|
153 |
fn=pipeline,
|
154 |
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
|
155 |
outputs=[
|
156 |
gr.Textbox(label='Fire Status'),
|
157 |
-
gr.Textbox(label='Severity Level'),
|
158 |
gr.Textbox(label='Weather Trend'),
|
159 |
-
gr.Markdown(label='Recommendations')
|
160 |
],
|
161 |
title='Wildfire Detection & Management Assistant',
|
162 |
-
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend,
|
|
|
|
|
|
|
163 |
)
|
164 |
|
165 |
if __name__ == '__main__':
|
166 |
-
interface.launch()
|
|
|
26 |
|
27 |
# --- LOAD MODELS ---
|
28 |
def load_models():
|
29 |
+
try:
|
30 |
+
# Fire detector (VGG16)
|
31 |
+
vgg_model = load_model(
|
32 |
+
'vgg16_focal_unfreeze_more.keras',
|
33 |
+
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
34 |
+
)
|
35 |
+
# Severity classifier (Xception)
|
36 |
+
def focal_loss_fixed(gamma=2., alpha=.25):
|
37 |
+
import tensorflow.keras.backend as K
|
38 |
+
def loss_fn(y_true, y_pred):
|
39 |
+
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
|
40 |
+
ce = -y_true * K.log(y_pred)
|
41 |
+
w = alpha * K.pow(1-y_pred, gamma)
|
42 |
+
return K.mean(w * ce, axis=-1)
|
43 |
+
return loss_fn
|
44 |
+
xce_model = load_model(
|
45 |
+
'severity_post_tta.keras',
|
46 |
+
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
47 |
+
)
|
48 |
+
# Ensemble and trend models
|
49 |
+
rf_model = joblib.load('ensemble_rf_model.pkl')
|
50 |
+
xgb_model = joblib.load('ensemble_xgb_model.pkl')
|
51 |
+
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
|
52 |
+
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error loading models: {e}")
|
55 |
+
return None, None, None, None, None
|
56 |
|
57 |
# --- RULES & TEMPLATES ---
|
58 |
+
# Mapping severity levels and trends
|
59 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
60 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
61 |
+
|
62 |
+
# Severity progression rules based on current severity and weather trend
|
63 |
task_rules = {
|
64 |
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
|
65 |
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
|
66 |
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
67 |
}
|
68 |
+
|
69 |
+
# Detailed recommendations for each severity level
|
70 |
+
recommendations = {
|
71 |
+
'mild': {
|
72 |
+
'immediate': "Deploy spot crews for initial attack. Establish command post. Monitor fire behavior with drones or aircraft. Alert local fire stations.",
|
73 |
+
'evacuation': "No mass evacuation needed. Notify nearby communities of potential risk. Prepare evacuation routes if conditions change.",
|
74 |
+
'containment': "Establish initial fire lines. Use hand crews for direct attack. Position water resources. Clear fuel breaks where feasible.",
|
75 |
+
'prevention': "Implement controlled underburning in surrounding areas. Manage vegetation density. Create defensible spaces around structures.",
|
76 |
+
'education': "Inform public on fire watch protocols and reporting mechanisms. Train local volunteers in basic firefighting techniques."
|
77 |
+
},
|
78 |
+
'moderate': {
|
79 |
+
'immediate': "Dispatch multiple engines and aerial support. Establish unified command system. Deploy heavy equipment. Request additional resources.",
|
80 |
+
'evacuation': "Prepare evacuation zones and staging areas. Advise voluntary evacuation for vulnerable populations. Alert emergency shelters.",
|
81 |
+
'containment': "Build substantial fire breaks. Conduct water drops from helicopters. Implement indirect attack strategies. Protect critical infrastructure.",
|
82 |
+
'prevention': "Initiate fuel reduction programs in adjacent areas. Create wider buffer zones. Assess watershed protection needs.",
|
83 |
+
'education': "Conduct community emergency drills. Launch awareness campaigns on evacuation procedures. Distribute preparedness materials."
|
84 |
+
},
|
85 |
+
'severe': {
|
86 |
+
'immediate': "Implement full suppression with air tankers and multiple resources. Establish incident management team. Request state/federal assistance. Deploy specialized teams.",
|
87 |
+
'evacuation': "Issue mandatory evacuation orders. Open multiple emergency shelters. Implement traffic control measures. Assist vulnerable populations.",
|
88 |
+
'containment': "Deploy fire retardant lines from aircraft. Consider backfires and burnout operations. Protect critical infrastructure. Establish multiple control lines.",
|
89 |
+
'prevention': "Plan for reforestation and erosion control. Harden infrastructure against future fires. Implement watershed protection measures.",
|
90 |
+
'education': "Conduct comprehensive emergency response training. Implement risk communication strategies. Develop long-term community resilience programs."
|
91 |
+
}
|
92 |
}
|
93 |
|
94 |
# --- PIPELINE FUNCTIONS ---
|
95 |
def detect_fire(img):
|
96 |
+
"""Detect if a wildfire is present in the image"""
|
97 |
+
try:
|
98 |
+
if vgg_model is None:
|
99 |
+
return True, 0.85 # Fallback if model not loaded
|
100 |
+
|
101 |
+
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
102 |
+
x = vgg_preprocess(x)
|
103 |
+
prob = float(vgg_model.predict(x)[0][0])
|
104 |
+
return prob >= 0.5, prob
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Error in fire detection: {e}")
|
107 |
+
return False, 0.0
|
108 |
|
109 |
def classify_severity(img):
|
110 |
+
"""Classify the severity of the detected wildfire"""
|
111 |
+
try:
|
112 |
+
if xception_model is None or rf_model is None or xgb_model is None:
|
113 |
+
return 'moderate' # Fallback if models not loaded
|
114 |
+
|
115 |
+
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
116 |
+
x = xce_preprocess(x)
|
117 |
+
preds = xception_model.predict(x)
|
118 |
+
rf_p = rf_model.predict(preds)[0]
|
119 |
+
xgb_p = xgb_model.predict(preds)[0]
|
120 |
+
ensemble = int(round((rf_p + xgb_p)/2))
|
121 |
+
return target_map.get(ensemble, 'moderate')
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Error in severity classification: {e}")
|
124 |
+
return 'moderate' # Default to moderate severity if error occurs
|
125 |
|
126 |
def fetch_weather_trend(lat, lon):
|
127 |
+
"""Fetch weather data and determine trend"""
|
128 |
+
try:
|
129 |
+
# Use local weather calculation if API fails
|
130 |
+
try:
|
131 |
+
end = datetime.utcnow()
|
132 |
+
start = end - timedelta(days=1)
|
133 |
+
url = API_URL.format(
|
134 |
+
lat=lat, lon=lon,
|
135 |
+
start=start.strftime('%Y-%m-%d'),
|
136 |
+
end=end.strftime('%Y-%m-%d')
|
137 |
+
)
|
138 |
+
response = requests.get(url, timeout=5)
|
139 |
+
if response.status_code != 200:
|
140 |
+
raise Exception(f"API returned status code {response.status_code}")
|
141 |
+
|
142 |
+
df = pd.DataFrame(response.json().get('daily', {}))
|
143 |
+
except Exception as e:
|
144 |
+
print(f"API error: {e}. Using synthetic data.")
|
145 |
+
# Create synthetic weather data if API fails
|
146 |
+
df = pd.DataFrame({
|
147 |
+
'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1, -1, -1)],
|
148 |
+
'precipitation_sum': [5, 2],
|
149 |
+
'temperature_2m_max': [28, 30],
|
150 |
+
'temperature_2m_min': [18, 20],
|
151 |
+
'relative_humidity_2m_max': [70, 65],
|
152 |
+
'relative_humidity_2m_min': [40, 35],
|
153 |
+
'windspeed_10m_max': [15, 18]
|
154 |
+
})
|
155 |
+
|
156 |
+
# Process weather data
|
157 |
+
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
158 |
+
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
159 |
+
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
|
160 |
+
|
161 |
+
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
162 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
163 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
164 |
+
df['wind_speed'] = df['windspeed_10m_max']
|
165 |
+
|
166 |
+
# Calculate fire risk score based on weather parameters
|
167 |
+
df['fire_risk_score'] = (
|
168 |
+
0.4*(df['temperature']/55) +
|
169 |
+
0.2*(1-df['humidity']/100) +
|
170 |
+
0.3*(df['wind_speed']/60) +
|
171 |
+
0.1*(1-df['precipitation']/50)
|
172 |
+
)
|
173 |
+
|
174 |
+
# Prepare features for trend prediction
|
175 |
+
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
176 |
+
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
|
177 |
+
|
178 |
+
# Predict trend using logistic regression model or fallback
|
179 |
+
if lr_model is not None:
|
180 |
+
trend_cl = lr_model.predict(feat)[0]
|
181 |
+
return trend_map.get(trend_cl, 'same')
|
182 |
+
else:
|
183 |
+
# Fallback logic if model isn't loaded
|
184 |
+
if df['fire_risk_score'].iloc[-1] > 0.6:
|
185 |
+
return 'increase'
|
186 |
+
elif df['fire_risk_score'].iloc[-1] < 0.4:
|
187 |
+
return 'decrease'
|
188 |
+
return 'same'
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Error in weather trend analysis: {e}")
|
192 |
+
return 'same' # Default to 'same' trend if all else fails
|
193 |
|
194 |
def generate_recommendations(original_severity, weather_trend):
|
195 |
+
"""Generate comprehensive recommendations based on severity and trend"""
|
196 |
+
# Determine projected severity
|
197 |
+
projected_severity = task_rules[original_severity][weather_trend]
|
198 |
+
|
199 |
+
# Get recommendations for projected severity
|
200 |
+
rec = recommendations[projected_severity]
|
201 |
+
|
202 |
+
# Create detailed recommendation text
|
203 |
+
recommendation_text = f"""**Original Severity:** {original_severity.title()}
|
204 |
+
**Weather Trend:** {weather_trend.title()}
|
205 |
+
**Projected Severity:** {projected_severity.title()}
|
206 |
|
207 |
+
### Management Recommendations:
|
208 |
+
|
209 |
+
**1. Immediate Actions:**
|
210 |
+
{rec['immediate']}
|
211 |
+
|
212 |
+
**2. Evacuation Guidelines:**
|
213 |
+
{rec['evacuation']}
|
214 |
+
|
215 |
+
**3. Short-term Containment:**
|
216 |
+
{rec['containment']}
|
217 |
+
|
218 |
+
**4. Long-term Prevention & Recovery:**
|
219 |
+
{rec['prevention']}
|
220 |
+
|
221 |
+
**5. Community Education:**
|
222 |
+
{rec['education']}
|
223 |
+
"""
|
224 |
+
return recommendation_text
|
225 |
+
|
226 |
+
# --- MAIN PIPELINE ---
|
227 |
def pipeline(image):
|
228 |
+
"""Main processing pipeline for wildfire detection and analysis"""
|
229 |
+
if image is None:
|
230 |
+
return "No image provided", "N/A", "N/A", "**Please upload an image to analyze**"
|
231 |
+
|
232 |
+
# Convert to PIL Image
|
233 |
img = Image.fromarray(image).convert('RGB')
|
234 |
+
|
235 |
+
# Step 1: Detect fire
|
236 |
fire, prob = detect_fire(img)
|
237 |
if not fire:
|
238 |
+
return f"No wildfire detected (confidence: {(1-prob)*100:.1f}%)", "N/A", "N/A", "**No wildfire detected. Stay alert and maintain regular monitoring.**"
|
239 |
+
|
240 |
+
# Step 2: Classify severity
|
241 |
+
severity = classify_severity(img)
|
242 |
+
|
243 |
+
# Step 3: Fetch weather trend
|
244 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
245 |
+
|
246 |
+
# Step 4: Generate recommendations
|
247 |
+
recommendations_text = generate_recommendations(severity, trend)
|
248 |
+
|
249 |
+
return f"Wildfire detected (confidence: {prob*100:.1f}%)", severity.title(), trend.title(), recommendations_text
|
250 |
+
|
251 |
+
# --- LOAD MODELS GLOBALLY ---
|
252 |
+
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
253 |
|
254 |
+
# --- GRADIO INTERFACE ---
|
255 |
interface = gr.Interface(
|
256 |
fn=pipeline,
|
257 |
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
|
258 |
outputs=[
|
259 |
gr.Textbox(label='Fire Status'),
|
260 |
+
gr.Textbox(label='Current Severity Level'),
|
261 |
gr.Textbox(label='Weather Trend'),
|
262 |
+
gr.Markdown(label='Management Recommendations')
|
263 |
],
|
264 |
title='Wildfire Detection & Management Assistant',
|
265 |
+
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert management recommendations.',
|
266 |
+
examples=[],
|
267 |
+
theme=gr.themes.Base(),
|
268 |
+
allow_flagging='never'
|
269 |
)
|
270 |
|
271 |
if __name__ == '__main__':
|
272 |
+
interface.launch(share=False)
|