AbdullahImran commited on
Commit
c1a8779
·
verified ·
1 Parent(s): bde892e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -31
app.py CHANGED
@@ -11,7 +11,6 @@ from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preproce
11
  from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
12
  from tensorflow.keras.losses import BinaryFocalCrossentropy
13
  from PIL import Image
14
- from xgboost import XGBClassifier
15
 
16
  # --- CONFIGURATION ---
17
  FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
@@ -28,10 +27,12 @@ API_URL = (
28
  # --- LOAD MODELS ---
29
  def load_models():
30
  try:
 
31
  vgg_model = load_model(
32
  'vgg16_focal_unfreeze_more.keras',
33
  custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
34
  )
 
35
  def focal_loss_fixed(gamma=2., alpha=.25):
36
  import tensorflow.keras.backend as K
37
  def loss_fn(y_true, y_pred):
@@ -45,11 +46,10 @@ def load_models():
45
  'severity_post_tta.keras',
46
  custom_objects={'focal_loss_fixed': focal_loss_fixed()}
47
  )
48
- # Reload XGBoost from JSON to avoid pickle warnings
49
- xgb_model = XGBClassifier()
50
- xgb_model.load_model('ensemble_xgb_model.json')
51
- rf_model = joblib.load('ensemble_rf_model.pkl')
52
- lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
53
  return vgg_model, xce_model, rf_model, xgb_model, lr_model
54
  except Exception as e:
55
  print(f"Error loading models: {e}")
@@ -59,13 +59,13 @@ def load_models():
59
  vgg_model, xce_model, rf_model, xgb_model, lr_model = load_models()
60
 
61
  target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
62
- trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
63
  task_rules = {
64
- 'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
65
- 'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
66
- 'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
67
  }
68
- recommendations = { ... } # (keep your existing recommendations dict here)
69
 
70
  # --- PIPELINE FUNCTIONS ---
71
  def detect_fire(img):
@@ -87,7 +87,7 @@ def classify_severity(img):
87
  x = keras_image.img_to_array(img.resize((224,224)))[None]
88
  x = xce_preprocess(x)
89
  preds = xce_model.predict(x)
90
- rf_p = rf_model.predict(preds)[0]
91
  xgb_p = xgb_model.predict(preds)[0]
92
  ensemble = int(round((rf_p + xgb_p) / 2))
93
  return target_map.get(ensemble, 'moderate')
@@ -95,6 +95,7 @@ def classify_severity(img):
95
  print(f"Error in severity classification: {e}")
96
  return 'moderate'
97
 
 
98
  def fetch_weather_trend(lat, lon):
99
  try:
100
  end = datetime.utcnow()
@@ -106,6 +107,7 @@ def fetch_weather_trend(lat, lon):
106
  response.raise_for_status()
107
  df = pd.DataFrame(response.json().get('daily', {}))
108
  except Exception:
 
109
  df = pd.DataFrame({
110
  'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1,-1,-1)],
111
  'precipitation_sum': [5, 2],
@@ -115,12 +117,10 @@ def fetch_weather_trend(lat, lon):
115
  'relative_humidity_2m_min': [40, 35],
116
  'windspeed_10m_max': [15, 18]
117
  })
118
- for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
119
- 'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
120
- df[c] = pd.to_numeric(df[c], errors='coerce')
121
  df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min']) / 2
122
- df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min']) / 2
123
- df['wind_speed'] = df['windspeed_10m_max']
124
  df['precipitation'] = df['precipitation_sum']
125
  df['fire_risk_score'] = (
126
  0.4 * (df['temperature'] / 55) +
@@ -134,15 +134,10 @@ def fetch_weather_trend(lat, lon):
134
  return trend_map.get(trend_cl, 'same')
135
  return 'same'
136
 
 
137
  def generate_recommendations(original_severity, weather_trend):
138
- """
139
- Generate management recommendations based on original severity and weather trend.
140
- Returns a formatted markdown string.
141
- """
142
  projected = task_rules[original_severity][weather_trend]
143
  rec = recommendations[projected]
144
-
145
- # Build the output string using f-strings and implicit concatenation
146
  return (
147
  f"**Original Severity:** {original_severity.title()}\n"
148
  f"**Weather Trend:** {weather_trend.title()}\n"
@@ -155,20 +150,21 @@ def generate_recommendations(original_severity, weather_trend):
155
  f"**Education:** {rec['education']}"
156
  )
157
 
 
158
  def pipeline(image):
159
  if image is None:
160
- return "No image provided","N/A","N/A","**Please upload an image to analyze**"
161
  img = Image.fromarray(image).convert('RGB')
162
  fire, prob = detect_fire(img)
163
  if not fire:
164
  return (
165
  f"No wildfire detected (confidence: {(1-prob)*100:.1f}%)",
166
- "N/A","N/A",
167
  "**No wildfire detected. Stay alert.**"
168
  )
169
- sev = classify_severity(img)
170
  trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
171
- recs = generate_recommendations(sev, trend)
172
  return (
173
  f"**Wildfire detected** (confidence: {prob*100:.1f}%)",
174
  f"**{sev.title()}**",
@@ -176,12 +172,13 @@ def pipeline(image):
176
  recs
177
  )
178
 
 
179
  def safe_pipeline(image):
180
  try:
181
  return pipeline(image)
182
  except Exception as e:
183
  print(f"Error in pipeline: {e}")
184
- return "Error during analysis","N/A","N/A", f"**Error: {e}**"
185
 
186
  # --- GRADIO UI ---
187
  custom_css = '''
@@ -196,14 +193,16 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
196
  with gr.Column():
197
  gr.Markdown("# 🔥 Wildfire Command Center")
198
  gr.Markdown("Upload a forest image to detect wildfire, classify severity, and get actionable recommendations.")
 
199
  with gr.Tabs():
200
  with gr.TabItem("Analyze 🔍"):
201
  with gr.Row():
202
  with gr.Column(scale=1):
203
- image_input = gr.Image(type="numpy", label="Forest Image", tool="editor")
204
- run_btn = gr.Button("Analyze Now", variant="primary")
 
205
  with gr.Column(scale=1):
206
- status_out = gr.Markdown("*Status will appear here*", label="Status")
207
  severity_out = gr.Markdown("---", label="Severity")
208
  trend_out = gr.Markdown("---", label="Weather Trend")
209
  recs_out = gr.Markdown("---", label="Recommendations")
@@ -212,6 +211,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
212
  last_severity = gr.Markdown("---", elem_classes="output-card")
213
  last_trend = gr.Markdown("---", elem_classes="output-card")
214
  last_recs = gr.Markdown("---", elem_classes="output-card")
 
215
  run_btn.click(
216
  fn=safe_pipeline,
217
  inputs=image_input,
@@ -221,5 +221,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
221
  inputs=[status_out, severity_out, trend_out, recs_out],
222
  outputs=[last_status, last_severity, last_trend, last_recs]
223
  )
 
224
  if __name__ == '__main__':
225
  demo.queue(api_open=True).launch()
 
11
  from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
12
  from tensorflow.keras.losses import BinaryFocalCrossentropy
13
  from PIL import Image
 
14
 
15
  # --- CONFIGURATION ---
16
  FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
 
27
  # --- LOAD MODELS ---
28
  def load_models():
29
  try:
30
+ # VGG fire detection model
31
  vgg_model = load_model(
32
  'vgg16_focal_unfreeze_more.keras',
33
  custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
34
  )
35
+ # Xception severity model
36
  def focal_loss_fixed(gamma=2., alpha=.25):
37
  import tensorflow.keras.backend as K
38
  def loss_fn(y_true, y_pred):
 
46
  'severity_post_tta.keras',
47
  custom_objects={'focal_loss_fixed': focal_loss_fixed()}
48
  )
49
+ # Reload ensemble models from .pkl
50
+ rf_model = joblib.load('ensemble_rf_model.pkl')
51
+ xgb_model = joblib.load('ensemble_xgb_model.pkl')
52
+ lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
 
53
  return vgg_model, xce_model, rf_model, xgb_model, lr_model
54
  except Exception as e:
55
  print(f"Error loading models: {e}")
 
59
  vgg_model, xce_model, rf_model, xgb_model, lr_model = load_models()
60
 
61
  target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
62
+ trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
63
  task_rules = {
64
+ 'mild': {'decrease': 'mild', 'same': 'mild', 'increase': 'moderate'},
65
+ 'moderate': {'decrease': 'mild', 'same': 'moderate', 'increase': 'severe'},
66
+ 'severe': {'decrease': 'moderate', 'same': 'severe', 'increase': 'severe'}
67
  }
68
+ recommendations = { ... } # (your existing recommendations dict)
69
 
70
  # --- PIPELINE FUNCTIONS ---
71
  def detect_fire(img):
 
87
  x = keras_image.img_to_array(img.resize((224,224)))[None]
88
  x = xce_preprocess(x)
89
  preds = xce_model.predict(x)
90
+ rf_p = rf_model.predict(preds)[0]
91
  xgb_p = xgb_model.predict(preds)[0]
92
  ensemble = int(round((rf_p + xgb_p) / 2))
93
  return target_map.get(ensemble, 'moderate')
 
95
  print(f"Error in severity classification: {e}")
96
  return 'moderate'
97
 
98
+
99
  def fetch_weather_trend(lat, lon):
100
  try:
101
  end = datetime.utcnow()
 
107
  response.raise_for_status()
108
  df = pd.DataFrame(response.json().get('daily', {}))
109
  except Exception:
110
+ # fallback dummy data
111
  df = pd.DataFrame({
112
  'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1,-1,-1)],
113
  'precipitation_sum': [5, 2],
 
117
  'relative_humidity_2m_min': [40, 35],
118
  'windspeed_10m_max': [15, 18]
119
  })
120
+ # compute features
 
 
121
  df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min']) / 2
122
+ df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min']) / 2
123
+ df['wind_speed'] = df['windspeed_10m_max']
124
  df['precipitation'] = df['precipitation_sum']
125
  df['fire_risk_score'] = (
126
  0.4 * (df['temperature'] / 55) +
 
134
  return trend_map.get(trend_cl, 'same')
135
  return 'same'
136
 
137
+
138
  def generate_recommendations(original_severity, weather_trend):
 
 
 
 
139
  projected = task_rules[original_severity][weather_trend]
140
  rec = recommendations[projected]
 
 
141
  return (
142
  f"**Original Severity:** {original_severity.title()}\n"
143
  f"**Weather Trend:** {weather_trend.title()}\n"
 
150
  f"**Education:** {rec['education']}"
151
  )
152
 
153
+
154
  def pipeline(image):
155
  if image is None:
156
+ return "No image provided", "N/A", "N/A", "**Please upload an image to analyze**"
157
  img = Image.fromarray(image).convert('RGB')
158
  fire, prob = detect_fire(img)
159
  if not fire:
160
  return (
161
  f"No wildfire detected (confidence: {(1-prob)*100:.1f}%)",
162
+ "N/A", "N/A",
163
  "**No wildfire detected. Stay alert.**"
164
  )
165
+ sev = classify_severity(img)
166
  trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
167
+ recs = generate_recommendations(sev, trend)
168
  return (
169
  f"**Wildfire detected** (confidence: {prob*100:.1f}%)",
170
  f"**{sev.title()}**",
 
172
  recs
173
  )
174
 
175
+
176
  def safe_pipeline(image):
177
  try:
178
  return pipeline(image)
179
  except Exception as e:
180
  print(f"Error in pipeline: {e}")
181
+ return "Error during analysis", "N/A", "N/A", f"**Error: {e}**"
182
 
183
  # --- GRADIO UI ---
184
  custom_css = '''
 
193
  with gr.Column():
194
  gr.Markdown("# 🔥 Wildfire Command Center")
195
  gr.Markdown("Upload a forest image to detect wildfire, classify severity, and get actionable recommendations.")
196
+
197
  with gr.Tabs():
198
  with gr.TabItem("Analyze 🔍"):
199
  with gr.Row():
200
  with gr.Column(scale=1):
201
+ # use ImageEditor if in-browser annotation is needed, otherwise simple Image
202
+ image_input = gr.Image(type="numpy", label="Forest Image")
203
+ run_btn = gr.Button("Analyze Now", variant="primary")
204
  with gr.Column(scale=1):
205
+ status_out = gr.Markdown("*Status will appear here*", label="Status")
206
  severity_out = gr.Markdown("---", label="Severity")
207
  trend_out = gr.Markdown("---", label="Weather Trend")
208
  recs_out = gr.Markdown("---", label="Recommendations")
 
211
  last_severity = gr.Markdown("---", elem_classes="output-card")
212
  last_trend = gr.Markdown("---", elem_classes="output-card")
213
  last_recs = gr.Markdown("---", elem_classes="output-card")
214
+
215
  run_btn.click(
216
  fn=safe_pipeline,
217
  inputs=image_input,
 
221
  inputs=[status_out, severity_out, trend_out, recs_out],
222
  outputs=[last_status, last_severity, last_trend, last_recs]
223
  )
224
+
225
  if __name__ == '__main__':
226
  demo.queue(api_open=True).launch()