Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
-
import
|
6 |
import google.generativeai as genai
|
7 |
import gradio as gr
|
8 |
from datetime import datetime, timedelta
|
@@ -39,6 +39,7 @@ def load_models():
|
|
39 |
'vgg16_focal_unfreeze_more.keras',
|
40 |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
41 |
)
|
|
|
42 |
# Load Xception severity classifier
|
43 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
44 |
import tensorflow.keras.backend as K
|
@@ -49,76 +50,77 @@ def load_models():
|
|
49 |
weight = alpha * K.pow(1 - y_pred, gamma)
|
50 |
return K.mean(weight * ce, axis=-1)
|
51 |
return loss_fn
|
|
|
52 |
xce_model = load_model(
|
53 |
'severity_post_tta.keras',
|
54 |
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
55 |
)
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
# Load weather trend model
|
62 |
-
|
63 |
-
|
64 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
65 |
|
|
|
66 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
67 |
|
68 |
# --- LABEL MAPS ---
|
69 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
70 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
71 |
-
trend_rules = {
|
72 |
-
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
|
73 |
-
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
|
74 |
-
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
75 |
-
}
|
76 |
|
77 |
# --- PIPELINE FUNCTIONS ---
|
78 |
|
79 |
def detect_fire(img):
|
80 |
-
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
81 |
x = vgg_preprocess(x)
|
82 |
prob = float(vgg_model.predict(x)[0][0])
|
83 |
return prob >= 0.5, prob
|
84 |
|
85 |
-
|
86 |
def classify_severity(img):
|
87 |
-
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
88 |
x = xce_preprocess(x)
|
89 |
preds = xception_model.predict(x)
|
90 |
rf_p = rf_model.predict(preds)[0]
|
91 |
xgb_p = xgb_model.predict(preds)[0]
|
92 |
-
ensemble = int(round((rf_p + xgb_p)/2))
|
93 |
return target_map.get(ensemble, 'moderate')
|
94 |
|
95 |
-
|
96 |
def fetch_weather_trend(lat, lon):
|
97 |
end = datetime.utcnow()
|
98 |
start = end - timedelta(days=1)
|
99 |
-
url = API_URL.format(
|
100 |
-
|
101 |
-
|
|
|
|
|
102 |
data = requests.get(url).json().get('daily', {})
|
103 |
df = pd.DataFrame(data)
|
104 |
-
|
105 |
-
|
|
|
106 |
df[c] = pd.to_numeric(df.get(c, []), errors='coerce')
|
|
|
107 |
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
108 |
-
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
109 |
-
df['humidity']
|
110 |
-
df['wind_speed']
|
|
|
111 |
df['fire_risk_score'] = (
|
112 |
-
0.4*(df['temperature']/55) +
|
113 |
-
0.2*(1-df['humidity']/100) +
|
114 |
-
0.3*(df['wind_speed']/60) +
|
115 |
-
0.1*(1-df['precipitation']/50)
|
116 |
)
|
117 |
-
|
118 |
-
|
|
|
|
|
119 |
trend_cl = lr_model.predict(feat)[0]
|
120 |
-
return trend_map.get(trend_cl)
|
121 |
-
|
122 |
|
123 |
def generate_recommendations(wildfire_present, severity, weather_trend):
|
124 |
prompt = f"""
|
@@ -142,9 +144,11 @@ def pipeline(image):
|
|
142 |
fire, prob = detect_fire(img)
|
143 |
if not fire:
|
144 |
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
|
|
|
145 |
severity = classify_severity(img)
|
146 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
147 |
recs = generate_recommendations(True, severity, trend)
|
|
|
148 |
return f"Fire Detected (prob={prob:.2f})", severity.title(), trend, recs
|
149 |
|
150 |
interface = gr.Interface(
|
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
+
import joblib
|
6 |
import google.generativeai as genai
|
7 |
import gradio as gr
|
8 |
from datetime import datetime, timedelta
|
|
|
39 |
'vgg16_focal_unfreeze_more.keras',
|
40 |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
41 |
)
|
42 |
+
|
43 |
# Load Xception severity classifier
|
44 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
45 |
import tensorflow.keras.backend as K
|
|
|
50 |
weight = alpha * K.pow(1 - y_pred, gamma)
|
51 |
return K.mean(weight * ce, axis=-1)
|
52 |
return loss_fn
|
53 |
+
|
54 |
xce_model = load_model(
|
55 |
'severity_post_tta.keras',
|
56 |
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
57 |
)
|
58 |
+
|
59 |
+
# Load ensemble models correctly with joblib
|
60 |
+
rf_model = joblib.load('ensemble_rf_model.pkl')
|
61 |
+
xgb_model = joblib.load('ensemble_xgb_model.pkl')
|
62 |
+
|
63 |
# Load weather trend model
|
64 |
+
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
|
65 |
+
|
66 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
67 |
|
68 |
+
# Load all models
|
69 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
70 |
|
71 |
# --- LABEL MAPS ---
|
72 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
73 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# --- PIPELINE FUNCTIONS ---
|
76 |
|
77 |
def detect_fire(img):
|
78 |
+
x = keras_image.img_to_array(img.resize((128, 128)))[None]
|
79 |
x = vgg_preprocess(x)
|
80 |
prob = float(vgg_model.predict(x)[0][0])
|
81 |
return prob >= 0.5, prob
|
82 |
|
|
|
83 |
def classify_severity(img):
|
84 |
+
x = keras_image.img_to_array(img.resize((224, 224)))[None]
|
85 |
x = xce_preprocess(x)
|
86 |
preds = xception_model.predict(x)
|
87 |
rf_p = rf_model.predict(preds)[0]
|
88 |
xgb_p = xgb_model.predict(preds)[0]
|
89 |
+
ensemble = int(round((rf_p + xgb_p) / 2))
|
90 |
return target_map.get(ensemble, 'moderate')
|
91 |
|
|
|
92 |
def fetch_weather_trend(lat, lon):
|
93 |
end = datetime.utcnow()
|
94 |
start = end - timedelta(days=1)
|
95 |
+
url = API_URL.format(
|
96 |
+
lat=lat, lon=lon,
|
97 |
+
start=start.strftime('%Y-%m-%d'),
|
98 |
+
end=end.strftime('%Y-%m-%d')
|
99 |
+
)
|
100 |
data = requests.get(url).json().get('daily', {})
|
101 |
df = pd.DataFrame(data)
|
102 |
+
|
103 |
+
for c in ['precipitation_sum', 'temperature_2m_max', 'temperature_2m_min',
|
104 |
+
'relative_humidity_2m_max', 'relative_humidity_2m_min', 'windspeed_10m_max']:
|
105 |
df[c] = pd.to_numeric(df.get(c, []), errors='coerce')
|
106 |
+
|
107 |
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
108 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min']) / 2
|
109 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min']) / 2
|
110 |
+
df['wind_speed'] = df['windspeed_10m_max']
|
111 |
+
|
112 |
df['fire_risk_score'] = (
|
113 |
+
0.4 * (df['temperature'] / 55) +
|
114 |
+
0.2 * (1 - df['humidity'] / 100) +
|
115 |
+
0.3 * (df['wind_speed'] / 60) +
|
116 |
+
0.1 * (1 - df['precipitation'] / 50)
|
117 |
)
|
118 |
+
|
119 |
+
feats = df[['temperature', 'humidity', 'wind_speed', 'precipitation', 'fire_risk_score']]
|
120 |
+
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1, -1)
|
121 |
+
|
122 |
trend_cl = lr_model.predict(feat)[0]
|
123 |
+
return trend_map.get(trend_cl, 'same')
|
|
|
124 |
|
125 |
def generate_recommendations(wildfire_present, severity, weather_trend):
|
126 |
prompt = f"""
|
|
|
144 |
fire, prob = detect_fire(img)
|
145 |
if not fire:
|
146 |
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
|
147 |
+
|
148 |
severity = classify_severity(img)
|
149 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
150 |
recs = generate_recommendations(True, severity, trend)
|
151 |
+
|
152 |
return f"Fire Detected (prob={prob:.2f})", severity.title(), trend, recs
|
153 |
|
154 |
interface = gr.Interface(
|