Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,29 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load models
|
7 |
vgg16_model = tf.keras.models.load_model(
|
8 |
"vgg16_best_model.keras"
|
9 |
)
|
|
|
10 |
xception_model = tf.keras.models.load_model(
|
11 |
-
|
|
|
12 |
)
|
13 |
|
14 |
|
|
|
2 |
import tensorflow as tf
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
import keras.backend as K
|
7 |
+
|
8 |
+
|
9 |
+
# Define focal loss
|
10 |
+
def focal_loss(gamma=2., alpha=0.25):
|
11 |
+
def focal_loss_fixed(y_true, y_pred):
|
12 |
+
y_pred = tf.clip_by_value(y_pred, K.epsilon(), 1. - K.epsilon())
|
13 |
+
cross_entropy = -y_true * tf.math.log(y_pred)
|
14 |
+
weight = alpha * y_true * tf.math.pow((1 - y_pred), gamma)
|
15 |
+
loss = weight * cross_entropy
|
16 |
+
return tf.reduce_sum(loss, axis=-1)
|
17 |
+
return focal_loss_fixed
|
18 |
+
|
19 |
|
20 |
# Load models
|
21 |
vgg16_model = tf.keras.models.load_model(
|
22 |
"vgg16_best_model.keras"
|
23 |
)
|
24 |
+
|
25 |
xception_model = tf.keras.models.load_model(
|
26 |
+
'xception_best.keras',
|
27 |
+
custom_objects={'focal_loss_fixed': focal_loss()}
|
28 |
)
|
29 |
|
30 |
|