Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
-
import
|
6 |
import google.generativeai as genai
|
7 |
import gradio as gr
|
8 |
from google.colab import drive
|
@@ -15,7 +15,6 @@ from tensorflow.keras.losses import BinaryFocalCrossentropy
|
|
15 |
from PIL import Image
|
16 |
|
17 |
# --- CONFIGURATION ---
|
18 |
-
# Coordinates for a representative forest area in Pakistan
|
19 |
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
|
20 |
API_URL = (
|
21 |
"https://archive-api.open-meteo.com/v1/archive"
|
@@ -28,7 +27,6 @@ API_URL = (
|
|
28 |
)
|
29 |
|
30 |
# --- GEMINI SETUP ---
|
31 |
-
# Retrieve API key from environment variable (set in Hugging Face Secrets)
|
32 |
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
|
33 |
if not GOOGLE_API_KEY:
|
34 |
raise ValueError("Missing GOOGLE_API_KEY environment variable")
|
@@ -38,28 +36,28 @@ flash = genai.GenerativeModel('gemini-1.5-flash')
|
|
38 |
# --- LOAD MODELS ---
|
39 |
def load_models():
|
40 |
drive.mount('/content/drive', force_remount=False)
|
41 |
-
# Fire detection (VGG16 binary classifier)
|
42 |
vgg_model = load_model(
|
43 |
'/content/drive/MyDrive/vgg16_focal_unfreeze_more.keras',
|
44 |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
45 |
)
|
46 |
-
# Severity classification (Xception + RF/XGB ensemble)
|
47 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
48 |
import tensorflow.keras.backend as K
|
49 |
def loss_fn(y_true, y_pred):
|
50 |
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
|
51 |
ce = -y_true * K.log(y_pred)
|
52 |
w = alpha * K.pow(1-y_pred, gamma)
|
53 |
-
return K.mean(w*ce, axis=-1)
|
54 |
return loss_fn
|
55 |
xce_model = load_model(
|
56 |
'/content/drive/My Drive/severity_post_tta.keras',
|
57 |
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
58 |
)
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
64 |
|
65 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
@@ -78,7 +76,7 @@ def detect_fire(img):
|
|
78 |
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
79 |
x = vgg_preprocess(x)
|
80 |
prob = float(vgg_model.predict(x)[0][0])
|
81 |
-
return prob>=0.5, prob
|
82 |
|
83 |
|
84 |
def classify_severity(img):
|
@@ -99,23 +97,22 @@ def fetch_weather_trend(lat, lon):
|
|
99 |
end=end.strftime('%Y-%m-%d'))
|
100 |
data = requests.get(url).json().get('daily', {})
|
101 |
df = pd.DataFrame(data)
|
102 |
-
# convert to numeric
|
103 |
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
104 |
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
105 |
-
df[c] = pd.to_numeric(df.get(c,
|
106 |
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
107 |
-
df['temperature'] = (df['temperature_2m_max']
|
108 |
-
df['humidity'] = (df['relative_humidity_2m_max']
|
109 |
df['wind_speed'] = df['windspeed_10m_max']
|
110 |
df['fire_risk_score'] = (
|
111 |
-
0.4*(df['temperature']/55)
|
112 |
-
0.2*(1-df['humidity']/100)
|
113 |
-
0.3*(df['wind_speed']/60)
|
114 |
0.1*(1-df['precipitation']/50)
|
115 |
)
|
116 |
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
117 |
-
|
118 |
-
trend_cl = lr_model.predict(
|
119 |
return trend_map.get(trend_cl)
|
120 |
|
121 |
|
@@ -139,11 +136,11 @@ def pipeline(image):
|
|
139 |
img = Image.fromarray(image).convert('RGB')
|
140 |
fire, prob = detect_fire(img)
|
141 |
if not fire:
|
142 |
-
return f"No wildfire detected (prob={prob:.2f})", "N/A", "**No wildfire detected. Stay alert.**"
|
143 |
severity = classify_severity(img)
|
144 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
145 |
recs = generate_recommendations(True, severity, trend)
|
146 |
-
return f"Fire Detected (prob={prob:.2f})", severity.title(), recs
|
147 |
|
148 |
interface = gr.Interface(
|
149 |
fn=pipeline,
|
@@ -151,6 +148,7 @@ interface = gr.Interface(
|
|
151 |
outputs=[
|
152 |
gr.Textbox(label='Fire Status'),
|
153 |
gr.Textbox(label='Severity Level'),
|
|
|
154 |
gr.Markdown(label='Recommendations')
|
155 |
],
|
156 |
title='Wildfire Detection & Management Assistant',
|
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
+
import pickle
|
6 |
import google.generativeai as genai
|
7 |
import gradio as gr
|
8 |
from google.colab import drive
|
|
|
15 |
from PIL import Image
|
16 |
|
17 |
# --- CONFIGURATION ---
|
|
|
18 |
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
|
19 |
API_URL = (
|
20 |
"https://archive-api.open-meteo.com/v1/archive"
|
|
|
27 |
)
|
28 |
|
29 |
# --- GEMINI SETUP ---
|
|
|
30 |
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
|
31 |
if not GOOGLE_API_KEY:
|
32 |
raise ValueError("Missing GOOGLE_API_KEY environment variable")
|
|
|
36 |
# --- LOAD MODELS ---
|
37 |
def load_models():
|
38 |
drive.mount('/content/drive', force_remount=False)
|
|
|
39 |
vgg_model = load_model(
|
40 |
'/content/drive/MyDrive/vgg16_focal_unfreeze_more.keras',
|
41 |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
42 |
)
|
|
|
43 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
44 |
import tensorflow.keras.backend as K
|
45 |
def loss_fn(y_true, y_pred):
|
46 |
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
|
47 |
ce = -y_true * K.log(y_pred)
|
48 |
w = alpha * K.pow(1-y_pred, gamma)
|
49 |
+
return K.mean(w * ce, axis=-1)
|
50 |
return loss_fn
|
51 |
xce_model = load_model(
|
52 |
'/content/drive/My Drive/severity_post_tta.keras',
|
53 |
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
54 |
)
|
55 |
+
with open('/content/drive/My Drive/ensemble_rf_model.pkl', 'rb') as f:
|
56 |
+
rf_model = pickle.load(f)
|
57 |
+
with open('/content/drive/My Drive/ensemble_xgb_model.pkl', 'rb') as f:
|
58 |
+
xgb_model = pickle.load(f)
|
59 |
+
with open('/content/drive/MyDrive/wildfire_logistic_model_synthetic.joblib', 'rb') as f:
|
60 |
+
lr_model = pickle.load(f)
|
61 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
62 |
|
63 |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
|
|
76 |
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
77 |
x = vgg_preprocess(x)
|
78 |
prob = float(vgg_model.predict(x)[0][0])
|
79 |
+
return prob >= 0.5, prob
|
80 |
|
81 |
|
82 |
def classify_severity(img):
|
|
|
97 |
end=end.strftime('%Y-%m-%d'))
|
98 |
data = requests.get(url).json().get('daily', {})
|
99 |
df = pd.DataFrame(data)
|
|
|
100 |
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
101 |
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
102 |
+
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
|
103 |
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
104 |
+
df['temperature'] = (df['temperature_2m_max']+df['temperature_2m_min'])/2
|
105 |
+
df['humidity'] = (df['relative_humidity_2m_max']+df['relative_humidity_2m_min'])/2
|
106 |
df['wind_speed'] = df['windspeed_10m_max']
|
107 |
df['fire_risk_score'] = (
|
108 |
+
0.4*(df['temperature']/55)+
|
109 |
+
0.2*(1-df['humidity']/100)+
|
110 |
+
0.3*(df['wind_speed']/60)+
|
111 |
0.1*(1-df['precipitation']/50)
|
112 |
)
|
113 |
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
114 |
+
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
|
115 |
+
trend_cl = lr_model.predict(feat)[0]
|
116 |
return trend_map.get(trend_cl)
|
117 |
|
118 |
|
|
|
136 |
img = Image.fromarray(image).convert('RGB')
|
137 |
fire, prob = detect_fire(img)
|
138 |
if not fire:
|
139 |
+
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
|
140 |
severity = classify_severity(img)
|
141 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
142 |
recs = generate_recommendations(True, severity, trend)
|
143 |
+
return f"Fire Detected (prob={prob:.2f})", severity.title(), trend, recs
|
144 |
|
145 |
interface = gr.Interface(
|
146 |
fn=pipeline,
|
|
|
148 |
outputs=[
|
149 |
gr.Textbox(label='Fire Status'),
|
150 |
gr.Textbox(label='Severity Level'),
|
151 |
+
gr.Textbox(label='Weather Trend'),
|
152 |
gr.Markdown(label='Recommendations')
|
153 |
],
|
154 |
title='Wildfire Detection & Management Assistant',
|