import os import requests import pandas as pd import numpy as np import joblib import google.generativeai as genai import gradio as gr from google.colab import drive, userdata from datetime import datetime, timedelta from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image as keras_image from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess from tensorflow.keras.losses import BinaryFocalCrossentropy # --- CONFIGURATION --- # Coordinates for a representative forest area in Pakistan FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)} API_URL = ( "https://archive-api.open-meteo.com/v1/archive" "?latitude={lat}&longitude={lon}" "&start_date={start}&end_date={end}" "&daily=temperature_2m_max,temperature_2m_min," "precipitation_sum,windspeed_10m_max," "relative_humidity_2m_max,relative_humidity_2m_min" "&timezone=UTC" ) # --- GEMINI SETUP --- GOOGLE_API_KEY = userdata.get('GOOGLE_API_KEY') genai.configure(api_key=GOOGLE_API_KEY) flash = genai.GenerativeModel('gemini-1.5-flash') # --- LOAD MODELS --- def load_models(): drive.mount('/content/drive', force_remount=False) # Fire detection (VGG16 binary classifier) vgg_model = load_model( '/content/drive/MyDrive/vgg16_focal_unfreeze_more.keras', custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy} ) # Severity classification (Xception + RF/XGB ensemble) def focal_loss_fixed(gamma=2., alpha=.25): import tensorflow.keras.backend as K def loss_fn(y_true, y_pred): eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps) ce = -y_true * K.log(y_pred) w = alpha * K.pow(1-y_pred, gamma) return K.mean(w*ce, axis=-1) return loss_fn xce_model = load_model( '/content/drive/My Drive/severity_post_tta.keras', custom_objects={'focal_loss_fixed': focal_loss_fixed()} ) rf_model = joblib.load('/content/drive/My Drive/ensemble_rf_model.pkl') xgb_model = joblib.load('/content/drive/My Drive/ensemble_xgb_model.pkl') # Weather trend (Logistic Regression) lr_model = joblib.load('/content/drive/MyDrive/wildfire_logistic_model_synthetic.joblib') return vgg_model, xce_model, rf_model, xgb_model, lr_model vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models() # --- LABEL MAPS --- target_map = {0: 'mild', 1: 'moderate', 2: 'severe'} trend_map = {1: 'increase', 0: 'same', -1: 'decrease'} trend_rules = { 'mild': {'decrease':'mild','same':'mild','increase':'moderate'}, 'moderate':{'decrease':'mild','same':'moderate','increase':'severe'}, 'severe': {'decrease':'moderate','same':'severe','increase':'severe'} } # --- PIPELINE FUNCTIONS --- def detect_fire(img): x = keras_image.img_to_array(img.resize((128,128)))[None] x = vgg_preprocess(x) prob = float(vgg_model.predict(x)[0][0]) return prob >= 0.5, prob def classify_severity(img): x = keras_image.img_to_array(img.resize((224,224)))[None] x = xce_preprocess(x) preds = xception_model.predict(x) rf_p = rf_model.predict(preds)[0] xgb_p = xgb_model.predict(preds)[0] ensemble = int(round((rf_p + xgb_p)/2)) return target_map.get(ensemble, 'moderate') def fetch_weather_trend(lat, lon): end = datetime.utcnow() start = end - timedelta(days=1) url = API_URL.format(lat=lat, lon=lon, start=start.strftime('%Y-%m-%d'), end=end.strftime('%Y-%m-%d')) data = requests.get(url).json().get('daily', {}) df = pd.DataFrame(data) # convert to numeric for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min', 'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']: df[c] = pd.to_numeric(df.get(c, []), errors='coerce') df['precipitation'] = df['precipitation_sum'].fillna(0) df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2 df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2 df['wind_speed'] = df['windspeed_10m_max'] df['fire_risk_score'] = ( 0.4*(df['temperature']/55) + 0.2*(1-df['humidity']/100) + 0.3*(df['wind_speed']/60) + 0.1*(1-df['precipitation']/50) ) feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']] v = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1) trend_cl = lr_model.predict(v)[0] return trend_map.get(trend_cl) def generate_recommendations(wildfire_present, severity, weather_trend): prompt = f""" You are a wildfire management expert. - Wildfire Present: {wildfire_present} - Severity: {severity} - Weather Trend: {weather_trend} Provide: 1. Immediate actions 2. Evacuation guidelines 3. Short-term containment 4. Long-term prevention & recovery 5. Community education """ return flash.generate_content(prompt).text # --- GRADIO INTERFACE --- def pipeline(image): img = Image.fromarray(image).convert('RGB') fire, prob = detect_fire(img) if not fire: return f"No wildfire detected (prob={prob:.2f})", "N/A", "No wildfire detected. Stay alert." severity = classify_severity(img) trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest']) recs = generate_recommendations(True, severity, trend) return f"Fire Detected (prob={prob:.2f})", severity.title(), recs interface = gr.Interface( fn=pipeline, inputs=gr.Image(type='numpy', label='Upload Wildfire Image'), outputs=[ gr.Textbox(label='Fire Status'), gr.Textbox(label='Severity Level'), gr.Markdown(label='Recommendations') ], title='Wildfire Detection & Management Assistant', description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert recommendations.' ) if __name__ == '__main__': interface.launch()