import os import requests import pandas as pd import numpy as np import joblib import gradio as gr from datetime import datetime, timedelta from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image as keras_image from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess from tensorflow.keras.losses import BinaryFocalCrossentropy from PIL import Image # --- CONFIGURATION --- FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)} API_URL = ( "https://archive-api.open-meteo.com/v1/archive" "?latitude={lat}&longitude={lon}" "&start_date={start}&end_date={end}" "&daily=temperature_2m_max,temperature_2m_min," "precipitation_sum,windspeed_10m_max," "relative_humidity_2m_max,relative_humidity_2m_min" "&timezone=UTC" ) # --- LOAD MODELS --- def load_models(): try: vgg_model = load_model( 'vgg16_focal_unfreeze_more.keras', custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy} ) def focal_loss_fixed(gamma=2., alpha=.25): import tensorflow.keras.backend as K def loss_fn(y_true, y_pred): eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps) ce = -y_true * K.log(y_pred) w = alpha * K.pow(1-y_pred, gamma) return K.mean(w * ce, axis=-1) return loss_fn xce_model = load_model( 'severity_post_tta.keras', custom_objects={'focal_loss_fixed': focal_loss_fixed()} ) rf_model = joblib.load('ensemble_rf_model.pkl') xgb_model = joblib.load('ensemble_xgb_model.pkl') lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib') return vgg_model, xce_model, rf_model, xgb_model, lr_model except Exception as e: print(f"Error loading models: {e}") return None, None, None, None, None # --- RULES & TEMPLATES --- target_map = {0: 'Mild', 1: 'Moderate', 2: 'Severe'} trend_map = {1: 'Increasing', 0: 'Stable', -1: 'Decreasing'} # Severity progression rules based on current severity and weather trend task_rules = { 'Mild': {'Decreasing':'Mild','Stable':'Mild','Increasing':'Moderate'}, 'Moderate':{'Decreasing':'Mild','Stable':'Moderate','Increasing':'Severe'}, 'Severe': {'Decreasing':'Moderate','Stable':'Severe','Increasing':'Severe'} } recommendations = { ... } # same as before # --- PIPELINE FUNCTIONS --- def detect_fire(img): ... def classify_severity(img): ... def fetch_weather_trend(lat, lon): ... def generate_recommendations(original_severity, weather_trend): ... # --- MAIN PIPELINE --- def pipeline(image, progress=gr.Progress()): progress(0.1, "Analyzing image…") if image is None: return ("No image provided", "N/A", "N/A", "**Please upload an image to analyze.**") img = Image.fromarray(image).convert('RGB') fire, prob = detect_fire(img) progress(0.3, "Detecting fire presence…") if not fire: return (f"✅ No wildfire detected (confidence {(1-prob)*100:.1f}% )", "N/A", "N/A", "**No wildfire detected. Continue monitoring.**") severity = classify_severity(img) progress(0.6, "Classifying severity…") trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest']) progress(0.8, "Computing recommendations…") recs = generate_recommendations(severity, trend) return (f"🔥 Wildfire detected! Confidence: {prob*100:.1f}%", severity, trend, recs) vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models() # --- GRADIO BLOCKS UI --- css = ''' .sidebar { background: #111827; color: #F9FAFB; padding: 1rem; border-radius: 0.5rem; } .card { background: #FFFFFF; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.1); padding: 1rem; margin-bottom: 1rem; } #title { font-size: 2.25rem; font-weight: 700; color: #1F2937; } #desc { font-size: 1rem; color: #4B5563; margin-bottom: 1rem; } .gr-button { background: #EF4444 !important; color: white !important; border-radius: 0.75rem; padding: 0.75rem 1.25rem; } ''' with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown("
Wildfire Command Center
", elem_id="title") gr.Markdown("
Upload a forest image from Pakistan to detect wildfires, assess severity, forecast weather-driven trends, and receive expert management plans.
", elem_id="desc") image_input = gr.Image(type='numpy', label='Upload Forest Image', tool='editor') run_btn = gr.Button("🔍 Analyze Now", variant="primary") with gr.Column(scale=0.6, elem_classes="sidebar"): gr.Markdown("### Last Analysis", elem_classes="card") last_status = gr.Textbox(label='Fire Status', interactive=False) last_severity = gr.Textbox(label='Severity Level', interactive=False) last_trend = gr.Textbox(label='Weather Trend', interactive=False) last_recs = gr.Markdown(label='Recommendations', interactive=False) run_btn.click( fn=pipeline, inputs=image_input, outputs=[last_status, last_severity, last_trend, last_recs] ) if __name__ == '__main__': demo.queue(api_open=True).launch(share=False)