import os import requests import pandas as pd import numpy as np import joblib import google.generativeai as genai import gradio as gr from datetime import datetime, timedelta from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image as keras_image from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess from tensorflow.keras.losses import BinaryFocalCrossentropy from PIL import Image # --- CONFIGURATION --- FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)} API_URL = ( "https://archive-api.open-meteo.com/v1/archive" "?latitude={lat}&longitude={lon}" "&start_date={start}&end_date={end}" "&daily=temperature_2m_max,temperature_2m_min," "precipitation_sum,windspeed_10m_max," "relative_humidity_2m_max,relative_humidity_2m_min" "&timezone=UTC" ) # --- GEMINI SETUP --- GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY') if not GOOGLE_API_KEY: raise ValueError("Missing GOOGLE_API_KEY environment variable") genai.configure(api_key=GOOGLE_API_KEY) flash = genai.GenerativeModel('gemini-pro') # --- LOAD MODELS --- def load_models(): # Load VGG16 wildfire detector vgg_model = load_model( 'vgg16_focal_unfreeze_more.keras', custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy} ) # Load Xception severity classifier def focal_loss_fixed(gamma=2., alpha=.25): import tensorflow.keras.backend as K def loss_fn(y_true, y_pred): eps = K.epsilon() y_pred = K.clip(y_pred, eps, 1. - eps) ce = -y_true * K.log(y_pred) weight = alpha * K.pow(1 - y_pred, gamma) return K.mean(weight * ce, axis=-1) return loss_fn xce_model = load_model( 'severity_post_tta.keras', custom_objects={'focal_loss_fixed': focal_loss_fixed()} ) # Load ensemble models correctly with joblib rf_model = joblib.load('ensemble_rf_model.pkl') xgb_model = joblib.load('ensemble_xgb_model.pkl') # Load weather trend model lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib') return vgg_model, xce_model, rf_model, xgb_model, lr_model # Load all models vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models() # --- LABEL MAPS --- target_map = {0: 'mild', 1: 'moderate', 2: 'severe'} trend_map = {1: 'increase', 0: 'same', -1: 'decrease'} # --- PIPELINE FUNCTIONS --- def detect_fire(img): x = keras_image.img_to_array(img.resize((128, 128)))[None] x = vgg_preprocess(x) prob = float(vgg_model.predict(x)[0][0]) return prob >= 0.5, prob def classify_severity(img): x = keras_image.img_to_array(img.resize((224, 224)))[None] x = xce_preprocess(x) preds = xception_model.predict(x) rf_p = rf_model.predict(preds)[0] xgb_p = xgb_model.predict(preds)[0] ensemble = int(round((rf_p + xgb_p) / 2)) return target_map.get(ensemble, 'moderate') def fetch_weather_trend(lat, lon): end = datetime.utcnow() start = end - timedelta(days=1) url = API_URL.format( lat=lat, lon=lon, start=start.strftime('%Y-%m-%d'), end=end.strftime('%Y-%m-%d') ) data = requests.get(url).json().get('daily', {}) df = pd.DataFrame(data) for c in ['precipitation_sum', 'temperature_2m_max', 'temperature_2m_min', 'relative_humidity_2m_max', 'relative_humidity_2m_min', 'windspeed_10m_max']: df[c] = pd.to_numeric(df.get(c, []), errors='coerce') df['precipitation'] = df['precipitation_sum'].fillna(0) df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min']) / 2 df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min']) / 2 df['wind_speed'] = df['windspeed_10m_max'] df['fire_risk_score'] = ( 0.4 * (df['temperature'] / 55) + 0.2 * (1 - df['humidity'] / 100) + 0.3 * (df['wind_speed'] / 60) + 0.1 * (1 - df['precipitation'] / 50) ) feats = df[['temperature', 'humidity', 'wind_speed', 'precipitation', 'fire_risk_score']] feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1, -1) trend_cl = lr_model.predict(feat)[0] return trend_map.get(trend_cl, 'same') def generate_recommendations(wildfire_present, severity, weather_trend): prompt = f""" You are a wildfire management expert. - Wildfire Present: {wildfire_present} - Severity: {severity} - Weather Trend: {weather_trend} Provide: 1. Immediate actions 2. Evacuation guidelines 3. Short-term containment 4. Long-term prevention & recovery 5. Community education """ return flash.generate_content(prompt).text # --- GRADIO INTERFACE --- def pipeline(image): img = Image.fromarray(image).convert('RGB') fire, prob = detect_fire(img) if not fire: return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**" severity = classify_severity(img) trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest']) recs = generate_recommendations(True, severity, trend) return f"Fire Detected (prob={prob:.2f})", severity.title(), trend, recs interface = gr.Interface( fn=pipeline, inputs=gr.Image(type='numpy', label='Upload Wildfire Image'), outputs=[ gr.Textbox(label='Fire Status'), gr.Textbox(label='Severity Level'), gr.Textbox(label='Weather Trend'), gr.Markdown(label='Recommendations') ], title='Wildfire Detection & Management Assistant', description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert recommendations.' ) if __name__ == '__main__': interface.launch()