File size: 11,545 Bytes
2890da2
 
 
 
 
 
3a5b4c3
2890da2
 
a235e07
2890da2
 
3a5b4c3
 
2890da2
2dadba8
 
2890da2
 
a235e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890da2
 
a235e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import gradio as gr
import pandas as pd
import numpy as np
import joblib
import xgboost as xgb
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import seaborn as sns
import io

# Load models & scalers
xgb_clf = xgb.XGBClassifier()
xgb_clf.load_model("xgb_model.json")
xgb_reg = joblib.load("xgb_pipeline_model.pkl")
scaler_X = joblib.load("scaler_X.pkl")
scaler_y = joblib.load("scaler_y.pkl")
lstm_model = load_model("lstm_revenue_model.keras")

# Set matplotlib style for dark theme compatibility
plt.style.use('dark_background')

def process_csv_file(file):
    """Process uploaded CSV file and return DataFrame"""
    if file is None:
        return None
    try:
        df = pd.read_csv(file.name)
        return df
    except Exception as e:
        gr.Warning(f"Error reading CSV file: {str(e)}")
        return None

def classify_fn(file):
    """Bankruptcy classification from CSV file"""
    if file is None:
        return "Please upload a CSV file", None
    
    df = process_csv_file(file)
    if df is None:
        return "Error processing file", None
    
    try:
        # Use all rows in the CSV for prediction
        preds = xgb_clf.predict(df)
        probs = xgb_clf.predict_proba(df)
        
        # Create visualization
        fig, ax = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
        ax.set_facecolor('#1f1f1f')
        
        if len(preds) == 1:
            # Single company prediction
            bars = ax.bar(['No Bankruptcy', 'Bankruptcy'], probs[0], 
                         color=['#4CAF50', '#F44336'], alpha=0.8)
            ax.set_ylim(0, 1)
            ax.set_title('Bankruptcy Probability', color='white', fontsize=14)
            ax.set_ylabel('Probability', color='white')
            result_text = f"Prediction: {'Bankruptcy Risk' if preds[0] == 1 else 'No Bankruptcy Risk'}\nConfidence: {max(probs[0]):.2%}"
        else:
            # Multiple companies
            bankruptcy_count = np.sum(preds)
            safe_count = len(preds) - bankruptcy_count
            bars = ax.bar(['Safe Companies', 'At Risk Companies'], 
                         [safe_count, bankruptcy_count], 
                         color=['#4CAF50', '#F44336'], alpha=0.8)
            ax.set_title(f'Bankruptcy Analysis for {len(preds)} Companies', color='white', fontsize=14)
            ax.set_ylabel('Number of Companies', color='white')
            result_text = f"Total Companies: {len(preds)}\nSafe: {safe_count}\nAt Risk: {bankruptcy_count}"
        
        ax.tick_params(colors='white')
        ax.spines['bottom'].set_color('white')
        ax.spines['left'].set_color('white')
        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
        
        plt.tight_layout()
        return result_text, fig
        
    except Exception as e:
        return f"Error in prediction: {str(e)}", None

def regress_fn(file):
    """Anomaly detection from CSV file"""
    if file is None:
        return "Please upload a CSV file", None
    
    df = process_csv_file(file)
    if df is None:
        return "Error processing file", None
    
    try:
        preds = xgb_reg.predict(df)
        
        # Create visualization
        fig, ax = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
        ax.set_facecolor('#1f1f1f')
        
        sns.histplot(preds, bins=20, kde=True, ax=ax, color='#00BCD4', alpha=0.7)
        ax.set_title('Anomaly Score Distribution', color='white', fontsize=14)
        ax.set_xlabel('Anomaly Score', color='white')
        ax.set_ylabel('Frequency', color='white')
        ax.tick_params(colors='white')
        ax.spines['bottom'].set_color('white')
        ax.spines['left'].set_color('white')
        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
        
        plt.tight_layout()
        
        # Summary statistics
        avg_score = np.mean(preds)
        high_risk_count = np.sum(preds > np.percentile(preds, 75))
        result_text = f"Average Anomaly Score: {avg_score:.3f}\nHigh Risk Companies: {high_risk_count}/{len(preds)}\nScore Range: {np.min(preds):.3f} - {np.max(preds):.3f}"
        
        return result_text, fig
        
    except Exception as e:
        return f"Error in prediction: {str(e)}", None

def lstm_fn(file):
    """LSTM revenue forecasting from CSV file"""
    if file is None:
        return "Please upload a CSV file", None
    
    df = process_csv_file(file)
    if df is None:
        return "Error processing file", None
    
    try:
        # Expect CSV with revenue columns or a single row with 10 revenue values
        if df.shape[1] < 10:
            return "CSV must contain at least 10 revenue columns for quarterly data", None
        
        # Take first row and first 10 columns as revenue sequence
        vals = df.iloc[0, :10].values.astype(float).reshape(1, -1)
        
        # Scale and predict
        vals_s = scaler_X.transform(vals).reshape((1, vals.shape[1], 1))
        pred_s = lstm_model.predict(vals_s)
        pred = scaler_y.inverse_transform(pred_s)[0, 0]
        
        # Create visualization
        fig, ax = plt.subplots(figsize=(12, 6), facecolor='#1f1f1f')
        ax.set_facecolor('#1f1f1f')
        
        quarters = [f'Q{i+1}' for i in range(10)]
        ax.plot(quarters, vals.flatten(), marker='o', linewidth=2, 
                markersize=8, color='#2196F3', label='Historical Revenue')
        ax.plot('Q11', pred, marker='X', markersize=15, color='#FF5722', 
                label=f'Predicted Q11: ${pred:,.0f}')
        
        ax.set_xlabel('Quarter', color='white')
        ax.set_ylabel('Revenue ($)', color='white')
        ax.set_title('Revenue Forecast - Next Quarter Prediction', color='white', fontsize=14)
        ax.legend(facecolor='#2f2f2f', edgecolor='white', labelcolor='white')
        ax.tick_params(colors='white')
        ax.spines['bottom'].set_color('white')
        ax.spines['left'].set_color('white')
        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
        ax.grid(True, alpha=0.3, color='white')
        
        plt.xticks(rotation=45)
        plt.tight_layout()
        
        # Calculate growth rate
        last_revenue = vals.flatten()[-1]
        growth_rate = ((pred - last_revenue) / last_revenue) * 100
        result_text = f"Predicted Q11 Revenue: ${pred:,.0f}\nGrowth from Q10: {growth_rate:+.1f}%"
        
        return result_text, fig
        
    except Exception as e:
        return f"Error in prediction: {str(e)}", None

# Custom CSS for proper dark mode support
custom_css = """
/* Dark theme for the entire interface */
.gradio-container {
    background-color: #1a1a1a !important;
    color: #ffffff !important;
}

.gr-box {
    background-color: #2d2d2d !important;
    border: 1px solid #404040 !important;
}

.gr-form {
    background-color: #2d2d2d !important;
}

.gr-panel {
    background-color: #2d2d2d !important;
    border: 1px solid #404040 !important;
}

.gr-button {
    background-color: #0066cc !important;
    color: white !important;
    border: none !important;
}

.gr-button:hover {
    background-color: #0052a3 !important;
}

.gr-input, .gr-textbox {
    background-color: #2d2d2d !important;
    border: 1px solid #404040 !important;
    color: #ffffff !important;
}

.gr-upload {
    background-color: #2d2d2d !important;
    border: 2px dashed #404040 !important;
    color: #ffffff !important;
}

.gr-file {
    background-color: #2d2d2d !important;
    color: #ffffff !important;
}

/* Tab styling */
.gr-tab-nav {
    background-color: #2d2d2d !important;
    border-bottom: 1px solid #404040 !important;
}

.gr-tab-nav button {
    background-color: transparent !important;
    color: #ffffff !important;
    border: none !important;
}

.gr-tab-nav button.selected {
    background-color: #0066cc !important;
    color: white !important;
}

/* Text and markdown */
.gr-markdown {
    color: #ffffff !important;
}

.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
    color: #ffffff !important;
}

/* Ensure plot backgrounds work with dark theme */
.gr-plot {
    background-color: #1f1f1f !important;
}
"""

# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base(), title="TriCast AI") as demo:
    gr.Markdown("""
    # πŸš€ TriCast AI
    ### Advanced Financial Intelligence Platform
    Upload your company's financial data as a CSV file to get comprehensive AI-powered insights across three key areas.
    """)
    
    gr.Markdown("""
    **πŸ“ CSV File Format Guidelines:**
    - **Bankruptcy & Anomaly Detection**: Include financial metrics as columns (revenue, debt, assets, etc.)
    - **Revenue Forecasting**: First 10 columns should contain quarterly revenue data
    - Each row represents one company's data
    """)
    
    with gr.Tab("🏦 Bankruptcy Risk Assessment"):
        gr.Markdown("**Upload CSV with company financial data to assess bankruptcy risk**")
        with gr.Row():
            with gr.Column():
                file1 = gr.File(label="Upload CSV File", file_types=[".csv"])
                classify_btn = gr.Button("πŸ” Analyze Bankruptcy Risk", variant="primary")
            with gr.Column():
                out1 = gr.Textbox(label="Analysis Results", lines=4)
                plt1 = gr.Plot(label="Risk Visualization")
        classify_btn.click(fn=classify_fn, inputs=file1, outputs=[out1, plt1])
    
    with gr.Tab("πŸ“Š Anomaly Detection"):
        gr.Markdown("**Upload CSV with company financial data to detect anomalies**")
        with gr.Row():
            with gr.Column():
                file2 = gr.File(label="Upload CSV File", file_types=[".csv"])
                regress_btn = gr.Button("πŸ”Ž Detect Anomalies", variant="primary")
            with gr.Column():
                out2 = gr.Textbox(label="Anomaly Analysis", lines=4)
                plt2 = gr.Plot(label="Score Distribution")
        regress_btn.click(fn=regress_fn, inputs=file2, outputs=[out2, plt2])
    
    with gr.Tab("πŸ“ˆ Revenue Forecasting"):
        gr.Markdown("**Upload CSV with quarterly revenue data (10 quarters) to forecast next quarter**")
        with gr.Row():
            with gr.Column():
                file3 = gr.File(label="Upload CSV File", file_types=[".csv"])
                forecast_btn = gr.Button("πŸ“Š Forecast Revenue", variant="primary")
            with gr.Column():
                out3 = gr.Textbox(label="Forecast Results", lines=4)
                plt3 = gr.Plot(label="Revenue Trend & Prediction")
        forecast_btn.click(fn=lstm_fn, inputs=file3, outputs=[out3, plt3])
    
    with gr.Tab("πŸ“‹ Sample Data Format"):
        gr.Markdown("""
        ### Sample CSV Formats:
        
        **For Bankruptcy & Anomaly Detection:**
        ```
        company_name,total_assets,total_liabilities,revenue,debt_ratio,current_ratio
        Company A,1000000,500000,800000,0.5,2.1
        Company B,2000000,1800000,600000,0.9,0.8
        ```
        
        **For Revenue Forecasting:**
        ```
        q1_revenue,q2_revenue,q3_revenue,q4_revenue,q5_revenue,q6_revenue,q7_revenue,q8_revenue,q9_revenue,q10_revenue
        100000,120000,110000,130000,125000,140000,135000,150000,145000,160000
        ```
        """)
    
    gr.Markdown("---")
    gr.Markdown("*TriCast AI - Powered by Advanced Machine Learning | Industry, Innovation and Infrastructure*")

if __name__ == "__main__":
    demo.launch()