Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import joblib | |
import xgboost as xgb | |
from tensorflow.keras.models import load_model | |
import pickle | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
# Load models & scalers | |
xgb_clf = xgb.XGBClassifier(); xgb_clf.load_model("xgb_model.json") | |
xgb_reg = joblib.load("xgb_pipeline_model.pkl") | |
scaler_X = joblib.load("scaler_X.pkl") | |
scaler_y = joblib.load("scaler_y.pkl") | |
lstm_model = load_model("lstm_revenue_model.keras") | |
# Prediction + Plot functions | |
def classify_fn(df): | |
# df: pandas DataFrame of features | |
preds = xgb_clf.predict(df) | |
probs = xgb_clf.predict_proba(df) | |
# Bar chart for first prediction probabilities | |
fig, ax = plt.subplots() | |
ax.bar(['No Bankruptcy','Bankruptcy'], probs[0], color=['#4CAF50','#F44336']) | |
ax.set_ylim(0,1) | |
ax.set_title('Bankruptcy Probability') | |
ax.set_ylabel('Probability') | |
plt.tight_layout() | |
return {"Predicted Label": int(preds[0])}, fig | |
def regress_fn(df): | |
preds = xgb_reg.predict(df) | |
# Histogram of predictions | |
fig, ax = plt.subplots() | |
sns.histplot(preds, bins=20, kde=True, ax=ax) | |
ax.set_title('Anomaly Score Distribution') | |
ax.set_xlabel('Predicted Anomaly Score') | |
plt.tight_layout() | |
return preds.tolist(), fig | |
def lstm_fn(seq_str): | |
# seq_str: comma-separated Q0-Q9 revenues | |
vals = np.array(list(map(float, seq_str.split(',')))).reshape(1, -1) | |
vals_s = scaler_X.transform(vals).reshape((1, vals.shape[1], 1)) | |
pred_s = lstm_model.predict(vals_s) | |
pred = scaler_y.inverse_transform(pred_s)[0,0] | |
# Plot input series + predicted point | |
fig, ax = plt.subplots() | |
ax.plot(range(10), vals.flatten(), marker='o', label='Input Revenue') | |
ax.plot(10, pred, marker='X', markersize=10, color='red', label='Predicted Q10') | |
ax.set_xlabel('Quarter Index (0-10)') | |
ax.set_ylabel('Revenue') | |
ax.set_title('Revenue Forecast') | |
ax.legend() | |
plt.tight_layout() | |
return float(pred), fig | |
# Build UI | |
grid_css = """ | |
body {background-color: #f7f7f7;} | |
.gradio-container {max-width: 800px; margin: auto; padding: 20px;} | |
h1, h2 {color: #333;} | |
""" | |
demo = gr.Blocks(css=grid_css) | |
with demo: | |
gr.Markdown("# π FinSight 360β’ Dashboard") | |
gr.Markdown("Comprehensive financial AI: Bankruptcy Classification, Anomaly Scoring, and Revenue Forecasting.") | |
with gr.Tab("π¦ Bankruptcy Classifier"): | |
gr.Markdown("Upload a single row of company features (CSV or paste) to predict bankruptcy:") | |
inp1 = gr.Dataframe(headers="...", datatype=["number"]*20 + ["text"]*4, label="Features DataFrame") | |
lbl1 = gr.Label(label="Predicted Label") | |
plt1 = gr.Plot() | |
inp1.submit(classify_fn, inp1, [lbl1, plt1]) | |
with gr.Tab("π Anomaly Regression"): | |
gr.Markdown("Upload company features to predict anomaly score:") | |
inp2 = gr.Dataframe(headers="...", datatype=["number"]*100, label="Features DataFrame") | |
out2 = gr.Textbox(label="Predicted Scores List") | |
plt2 = gr.Plot() | |
inp2.submit(regress_fn, inp2, [out2, plt2]) | |
with gr.Tab("π LSTM Revenue Forecast"): | |
gr.Markdown("Enter last 10 quarterly revenues (comma-separated) to forecast Q10 revenue:") | |
inp3 = gr.Textbox(placeholder="e.g. 1000,1200,1100,...", label="Q0βQ9 Revenues") | |
out3 = gr.Number(label="Predicted Q10 Revenue") | |
plt3 = gr.Plot() | |
inp3.submit(lstm_fn, inp3, [out3, plt3]) | |
gr.Markdown("---\n*Built with β€οΈ by FinSight AI Team*") | |
demo.launch() |