AbdullahImran commited on
Commit
5b00a4e
Β·
verified Β·
1 Parent(s): 8d69ddf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -67,7 +67,7 @@ h1, h2 {color: #333;}
67
  demo = gr.Blocks(css=grid_css)
68
  with demo:
69
  gr.Markdown("# πŸš€ FinSight 360β„’ Dashboard")
70
- gr.Markdown("Comprehensive financial AI:\\n- Bankruptcy Classification\\n- Anomaly Scoring\\n- Revenue Forecasting")
71
 
72
  with gr.Tab("🏦 Bankruptcy Classifier"):
73
  gr.Markdown("**Upload company features** (as DataFrame) to predict bankruptcy:")
@@ -75,7 +75,7 @@ with demo:
75
  classify_btn = gr.Button("Run Classification")
76
  out1 = gr.Label(label="Predicted Label")
77
  plt1 = gr.Plot()
78
- classify_btn.click(fn=classify_fn, inputs=inp1, outputs=[out1, plt1])])
79
 
80
  with gr.Tab("πŸ“ˆ Anomaly Regression"):
81
  gr.Markdown("**Upload company features** (as DataFrame) to predict anomaly score:")
@@ -83,15 +83,15 @@ with demo:
83
  regress_btn = gr.Button("Run Regression")
84
  out2 = gr.Textbox(label="Predicted Scores List")
85
  plt2 = gr.Plot()
86
- regress_btn.click(fn=regress_fn, inputs=inp2, outputs=[out2, plt2])])
87
 
88
  with gr.Tab("πŸ“Š LSTM Revenue Forecast"):
89
  gr.Markdown("**Enter last 10 quarterly revenues** (comma-separated) to forecast Q10 revenue:")
90
  inp3 = gr.Textbox(placeholder="e.g. 1000,1200,1100,...", label="Q0–Q9 Revenues")
91
  out3 = gr.Number(label="Predicted Q10 Revenue")
92
  plt3 = gr.Plot()
93
- inp3.submit(lstm_fn, inp3, [out3, plt3])
94
 
95
- gr.Markdown("---\\n*SDG 9: Industry, Innovation and Infrastructure*")
96
 
97
  demo.launch()
 
67
  demo = gr.Blocks(css=grid_css)
68
  with demo:
69
  gr.Markdown("# πŸš€ FinSight 360β„’ Dashboard")
70
+ gr.Markdown("Comprehensive financial AI:\n- Bankruptcy Classification\n- Anomaly Scoring\n- Revenue Forecasting")
71
 
72
  with gr.Tab("🏦 Bankruptcy Classifier"):
73
  gr.Markdown("**Upload company features** (as DataFrame) to predict bankruptcy:")
 
75
  classify_btn = gr.Button("Run Classification")
76
  out1 = gr.Label(label="Predicted Label")
77
  plt1 = gr.Plot()
78
+ classify_btn.click(fn=classify_fn, inputs=inp1, outputs=[out1, plt1])
79
 
80
  with gr.Tab("πŸ“ˆ Anomaly Regression"):
81
  gr.Markdown("**Upload company features** (as DataFrame) to predict anomaly score:")
 
83
  regress_btn = gr.Button("Run Regression")
84
  out2 = gr.Textbox(label="Predicted Scores List")
85
  plt2 = gr.Plot()
86
+ regress_btn.click(fn=regress_fn, inputs=inp2, outputs=[out2, plt2])
87
 
88
  with gr.Tab("πŸ“Š LSTM Revenue Forecast"):
89
  gr.Markdown("**Enter last 10 quarterly revenues** (comma-separated) to forecast Q10 revenue:")
90
  inp3 = gr.Textbox(placeholder="e.g. 1000,1200,1100,...", label="Q0–Q9 Revenues")
91
  out3 = gr.Number(label="Predicted Q10 Revenue")
92
  plt3 = gr.Plot()
93
+ inp3.submit(fn=lstm_fn, inputs=inp3, outputs=[out3, plt3])
94
 
95
+ gr.Markdown("---\n*Industry, Innovation and Infrastructure*")
96
 
97
  demo.launch()