Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -67,7 +67,7 @@ h1, h2 {color: #333;}
|
|
| 67 |
demo = gr.Blocks(css=grid_css)
|
| 68 |
with demo:
|
| 69 |
gr.Markdown("# π FinSight 360β’ Dashboard")
|
| 70 |
-
gr.Markdown("Comprehensive financial AI
|
| 71 |
|
| 72 |
with gr.Tab("π¦ Bankruptcy Classifier"):
|
| 73 |
gr.Markdown("**Upload company features** (as DataFrame) to predict bankruptcy:")
|
|
@@ -75,7 +75,7 @@ with demo:
|
|
| 75 |
classify_btn = gr.Button("Run Classification")
|
| 76 |
out1 = gr.Label(label="Predicted Label")
|
| 77 |
plt1 = gr.Plot()
|
| 78 |
-
classify_btn.click(fn=classify_fn, inputs=inp1, outputs=[out1, plt1])
|
| 79 |
|
| 80 |
with gr.Tab("π Anomaly Regression"):
|
| 81 |
gr.Markdown("**Upload company features** (as DataFrame) to predict anomaly score:")
|
|
@@ -83,15 +83,15 @@ with demo:
|
|
| 83 |
regress_btn = gr.Button("Run Regression")
|
| 84 |
out2 = gr.Textbox(label="Predicted Scores List")
|
| 85 |
plt2 = gr.Plot()
|
| 86 |
-
regress_btn.click(fn=regress_fn, inputs=inp2, outputs=[out2, plt2])
|
| 87 |
|
| 88 |
with gr.Tab("π LSTM Revenue Forecast"):
|
| 89 |
gr.Markdown("**Enter last 10 quarterly revenues** (comma-separated) to forecast Q10 revenue:")
|
| 90 |
inp3 = gr.Textbox(placeholder="e.g. 1000,1200,1100,...", label="Q0βQ9 Revenues")
|
| 91 |
out3 = gr.Number(label="Predicted Q10 Revenue")
|
| 92 |
plt3 = gr.Plot()
|
| 93 |
-
inp3.submit(lstm_fn, inp3, [out3, plt3])
|
| 94 |
|
| 95 |
-
gr.Markdown("
|
| 96 |
|
| 97 |
demo.launch()
|
|
|
|
| 67 |
demo = gr.Blocks(css=grid_css)
|
| 68 |
with demo:
|
| 69 |
gr.Markdown("# π FinSight 360β’ Dashboard")
|
| 70 |
+
gr.Markdown("Comprehensive financial AI:\n- Bankruptcy Classification\n- Anomaly Scoring\n- Revenue Forecasting")
|
| 71 |
|
| 72 |
with gr.Tab("π¦ Bankruptcy Classifier"):
|
| 73 |
gr.Markdown("**Upload company features** (as DataFrame) to predict bankruptcy:")
|
|
|
|
| 75 |
classify_btn = gr.Button("Run Classification")
|
| 76 |
out1 = gr.Label(label="Predicted Label")
|
| 77 |
plt1 = gr.Plot()
|
| 78 |
+
classify_btn.click(fn=classify_fn, inputs=inp1, outputs=[out1, plt1])
|
| 79 |
|
| 80 |
with gr.Tab("π Anomaly Regression"):
|
| 81 |
gr.Markdown("**Upload company features** (as DataFrame) to predict anomaly score:")
|
|
|
|
| 83 |
regress_btn = gr.Button("Run Regression")
|
| 84 |
out2 = gr.Textbox(label="Predicted Scores List")
|
| 85 |
plt2 = gr.Plot()
|
| 86 |
+
regress_btn.click(fn=regress_fn, inputs=inp2, outputs=[out2, plt2])
|
| 87 |
|
| 88 |
with gr.Tab("π LSTM Revenue Forecast"):
|
| 89 |
gr.Markdown("**Enter last 10 quarterly revenues** (comma-separated) to forecast Q10 revenue:")
|
| 90 |
inp3 = gr.Textbox(placeholder="e.g. 1000,1200,1100,...", label="Q0βQ9 Revenues")
|
| 91 |
out3 = gr.Number(label="Predicted Q10 Revenue")
|
| 92 |
plt3 = gr.Plot()
|
| 93 |
+
inp3.submit(fn=lstm_fn, inputs=inp3, outputs=[out3, plt3])
|
| 94 |
|
| 95 |
+
gr.Markdown("---\n*Industry, Innovation and Infrastructure*")
|
| 96 |
|
| 97 |
demo.launch()
|