AbdullahImran commited on
Commit
a7db21d
·
verified ·
1 Parent(s): 5db8369

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -43,7 +43,6 @@ def run_all_models(file):
43
  return "Error processing file", None, None, None, None, None
44
 
45
  try:
46
- # Prepare data for models (assuming same feature set as training)
47
  # Prepare data for models
48
  model_features = df.copy()
49
  for col in ['Id','anomaly_score','risk_flag']:
@@ -51,17 +50,16 @@ def run_all_models(file):
51
  model_features.drop(col, axis=1, inplace=True)
52
  # Fill NaNs
53
  model_features = model_features.fillna(0)
54
-
55
  # Align DataFrame columns to model’s training set:
56
  model_features = model_features.reindex(
57
  columns=expected_features, # from xgb_clf.get_booster().feature_names
58
  fill_value=0
59
  )
60
-
61
  # 1. BANKRUPTCY CLASSIFICATION
62
- bankruptcy_preds = xgb_clf.predict(model_features)
63
- bankruptcy_probs = xgb_clf.predict_proba(model_features)
64
-
65
  # Create bankruptcy visualization
66
  fig1, ax1 = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
67
  ax1.set_facecolor('#1f1f1f')
@@ -91,7 +89,7 @@ def run_all_models(file):
91
  plt.tight_layout()
92
 
93
  # 2. ANOMALY DETECTION
94
- anomaly_preds = xgb_reg.predict(model_features)
95
 
96
  # Create anomaly visualization
97
  fig2, ax2 = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
 
43
  return "Error processing file", None, None, None, None, None
44
 
45
  try:
 
46
  # Prepare data for models
47
  model_features = df.copy()
48
  for col in ['Id','anomaly_score','risk_flag']:
 
50
  model_features.drop(col, axis=1, inplace=True)
51
  # Fill NaNs
52
  model_features = model_features.fillna(0)
53
+
54
  # Align DataFrame columns to model’s training set:
55
  model_features = model_features.reindex(
56
  columns=expected_features, # from xgb_clf.get_booster().feature_names
57
  fill_value=0
58
  )
59
+
60
  # 1. BANKRUPTCY CLASSIFICATION
61
+ bankruptcy_preds = xgb_clf.predict(clf_features)
62
+ bankruptcy_probs = xgb_clf.predict_proba(clf_features)
 
63
  # Create bankruptcy visualization
64
  fig1, ax1 = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
65
  ax1.set_facecolor('#1f1f1f')
 
89
  plt.tight_layout()
90
 
91
  # 2. ANOMALY DETECTION
92
+ anomaly_preds = xgb_reg.predict(reg_features)
93
 
94
  # Create anomaly visualization
95
  fig2, ax2 = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')