Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import cv2 | |
import numpy as np | |
import pandas as pd | |
from scipy.signal import find_peaks, savgol_filter | |
from collections import Counter | |
from tqdm import tqdm | |
import time | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.fft as fft | |
import xgboost as xgb | |
from torch.utils.data import DataLoader, TensorDataset | |
import time | |
# Updated BiLSTM to handle variable layers | |
class BiLSTM(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size, num_layers=2, dropout=0.1): | |
super(BiLSTM, self).__init__() | |
self.bilstm = nn.LSTM( | |
input_size, | |
hidden_size, | |
num_layers=num_layers, | |
batch_first=True, | |
bidirectional=True, | |
dropout=dropout if num_layers > 1 else 0 # Dropout only applies for num_layers > 1 | |
) | |
self.fc = nn.Linear(hidden_size * 2, output_size) # Multiply hidden_size by 2 for bidirectional | |
def forward(self, x): | |
bilstm_output, _ = self.bilstm(x) | |
output = self.fc(bilstm_output[:, -1, :]) # Use the last time step | |
return output |