Spaces:
Sleeping
Sleeping
Commit
·
c0953f1
1
Parent(s):
1242be5
Added modularity
Browse files- app.py +5 -209
- models/__pycache__/bilstm.cpython-311.pyc +0 -0
- models/__pycache__/etsformer.cpython-311.pyc +0 -0
- models/__pycache__/respfusion.cpython-311.pyc +0 -0
- models/__pycache__/tcn.cpython-311.pyc +0 -0
- models/__pycache__/temporal_fusion_transformer.cpython-311.pyc +0 -0
- models/bilstm.py +1 -15
- models/etsformer.py +0 -13
- models/respfusion.py +100 -0
- models/tcn.py +0 -14
- models/{temporalfusiontransformer.py → temporal_fusion_transformer.py} +1 -15
app.py
CHANGED
@@ -14,215 +14,11 @@ import torch.fft as fft
|
|
14 |
import xgboost as xgb
|
15 |
from torch.utils.data import DataLoader, TensorDataset
|
16 |
import time
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# List to hold convolutional layers
|
24 |
-
self.convs = nn.ModuleList()
|
25 |
-
dropout = dropout if num_layers > 1 else 0 # No dropout if only one layer
|
26 |
-
self.dropout = nn.Dropout(dropout)
|
27 |
-
|
28 |
-
# Create the convolutional layers
|
29 |
-
for i in range(num_layers):
|
30 |
-
in_channels = input_size if i == 0 else hidden_size # First layer uses input_size, others use hidden_size
|
31 |
-
out_channels = hidden_size # All layers have the same hidden size
|
32 |
-
self.convs.append(nn.Conv1d(in_channels, out_channels, kernel_size=2, padding=1))
|
33 |
-
|
34 |
-
# Fully connected output layer
|
35 |
-
self.fc = nn.Linear(hidden_size, output_size)
|
36 |
-
|
37 |
-
def forward(self, x):
|
38 |
-
x = x.permute(0, 2, 1) # Change to (batch_size, features, timesteps)
|
39 |
-
|
40 |
-
# Apply each convolutional layer followed by dropout
|
41 |
-
for conv in self.convs:
|
42 |
-
x = torch.relu(conv(x))
|
43 |
-
x = self.dropout(x) # Apply dropout after each convolution
|
44 |
-
|
45 |
-
x = torch.mean(x, dim=2) # Global average pooling
|
46 |
-
x = self.fc(x) # Output layer
|
47 |
-
return x
|
48 |
-
|
49 |
-
# Define the Temporal Fusion Transformer (Temporal Fusion Transformer) model
|
50 |
-
class TemporalFusionTransformer(nn.Module):
|
51 |
-
def __init__(self, input_size, hidden_size, output_size, num_layers=3, dropout=0.1):
|
52 |
-
super(TemporalFusionTransformer, self).__init__()
|
53 |
-
# Encoder and Decoder LSTMs with multiple layers
|
54 |
-
self.encoder = nn.LSTM(input_size, hidden_size, num_layers=num_layers, batch_first=True, dropout=dropout)
|
55 |
-
self.decoder = nn.LSTM(hidden_size, hidden_size, num_layers=num_layers, batch_first=True, dropout=dropout)
|
56 |
-
|
57 |
-
self.attention = nn.MultiheadAttention(hidden_size, num_heads=4, batch_first=True) # Attention mechanism
|
58 |
-
self.fc = nn.Linear(hidden_size, output_size) # Fully connected output layer
|
59 |
-
self.dropout = nn.Dropout(dropout) # Dropout layer
|
60 |
-
|
61 |
-
def forward(self, x):
|
62 |
-
encoder_output, _ = self.encoder(x) # Encoder output
|
63 |
-
decoder_output, _ = self.decoder(encoder_output) # Decoder output
|
64 |
-
attention_output, _ = self.attention(decoder_output, encoder_output, encoder_output) # Attention output
|
65 |
-
attention_output = self.dropout(attention_output) # Apply dropout
|
66 |
-
output = self.fc(attention_output[:, -1, :]) # Take the last time step from the attention output
|
67 |
-
return output
|
68 |
-
|
69 |
-
|
70 |
-
# Build the ETSformer Class: Encoder, Trend, Seasonality, Exponential Smoothing, and Output Layer
|
71 |
-
class ETSformer(nn.Module):
|
72 |
-
def __init__(self, input_size, hidden_size, output_size, num_layers=3, dropout=0.1):
|
73 |
-
super(ETSformer, self).__init__()
|
74 |
-
|
75 |
-
# Encoder: LSTM with multiple layers and dropout
|
76 |
-
self.encoder = nn.LSTM(
|
77 |
-
input_size,
|
78 |
-
hidden_size,
|
79 |
-
num_layers=num_layers,
|
80 |
-
batch_first=True,
|
81 |
-
dropout=dropout if num_layers > 1 else 0.0 # Dropout only applies if num_layers > 1
|
82 |
-
)
|
83 |
-
|
84 |
-
# Trend, Seasonality, Exponential Modules
|
85 |
-
self.trend_module = nn.Sequential(
|
86 |
-
nn.Linear(hidden_size, hidden_size),
|
87 |
-
nn.Dropout(dropout) # Dropout in the trend module
|
88 |
-
)
|
89 |
-
self.seasonality_module = nn.Sequential(
|
90 |
-
nn.Linear(hidden_size, hidden_size),
|
91 |
-
nn.Dropout(dropout) # Dropout in the seasonality module
|
92 |
-
)
|
93 |
-
self.exponential_module = nn.Sequential(
|
94 |
-
nn.Linear(hidden_size, hidden_size),
|
95 |
-
nn.Dropout(dropout) # Dropout in the exponential module
|
96 |
-
)
|
97 |
-
|
98 |
-
self.fc = nn.Linear(hidden_size, output_size) # Fully connected layer for output
|
99 |
-
|
100 |
-
def forward(self, x):
|
101 |
-
encoder_output, _ = self.encoder(x) # Encode the input sequence
|
102 |
-
trend = self.trend_module(encoder_output )# Trend Component
|
103 |
-
# Seasonality Component
|
104 |
-
freq = fft.fft(encoder_output, dim=1) # Frequency domain transformation
|
105 |
-
seasonality = fft.ifft(self.seasonality_module(torch.abs(freq)), dim=1).real
|
106 |
-
exponential = torch.sigmoid(self.exponential_module(encoder_output)) # Exponential Smoothing Component
|
107 |
-
combined = trend + seasonality + exponential # Combine the components
|
108 |
-
# Output layer: Use the last time step for predictions
|
109 |
-
output = self.fc(combined[:, -1, :])
|
110 |
-
return output
|
111 |
-
|
112 |
-
# Updated BiLSTM to handle variable layers
|
113 |
-
class BiLSTM(nn.Module):
|
114 |
-
def __init__(self, input_size, hidden_size, output_size, num_layers=2, dropout=0.1):
|
115 |
-
super(BiLSTM, self).__init__()
|
116 |
-
self.bilstm = nn.LSTM(
|
117 |
-
input_size,
|
118 |
-
hidden_size,
|
119 |
-
num_layers=num_layers,
|
120 |
-
batch_first=True,
|
121 |
-
bidirectional=True,
|
122 |
-
dropout=dropout if num_layers > 1 else 0 # Dropout only applies for num_layers > 1
|
123 |
-
)
|
124 |
-
self.fc = nn.Linear(hidden_size * 2, output_size) # Multiply hidden_size by 2 for bidirectional
|
125 |
-
|
126 |
-
def forward(self, x):
|
127 |
-
bilstm_output, _ = self.bilstm(x)
|
128 |
-
output = self.fc(bilstm_output[:, -1, :]) # Use the last time step
|
129 |
-
return output
|
130 |
-
|
131 |
-
class RespFusion(nn.Module):
|
132 |
-
def __init__(self, tft_model, tcn_model, ets_model, bilstm_model, meta_learner_path=None, weights=None, strategy='stacking',):
|
133 |
-
super(RespFusion, self).__init__()
|
134 |
-
self.tft = tft_model
|
135 |
-
self.tcn = tcn_model
|
136 |
-
self.ets = ets_model
|
137 |
-
self.bilstm = bilstm_model
|
138 |
-
self.strategy = strategy # 'stacking' or other strategies
|
139 |
-
|
140 |
-
# Initialize XGBoost meta-learner
|
141 |
-
self.meta_learner = xgb.XGBRegressor() # Or XGBClassifier for classification
|
142 |
-
|
143 |
-
# Load the meta-learner if a path is provided
|
144 |
-
if meta_learner_path is not None:
|
145 |
-
self.meta_learner.load_model(meta_learner_path)
|
146 |
-
print(f"Meta-learner loaded from {meta_learner_path}")
|
147 |
-
|
148 |
-
# Storage for stacking training data
|
149 |
-
self.stacking_features = []
|
150 |
-
self.stacking_targets = []
|
151 |
-
|
152 |
-
# Set model weights for ensembling, default to equal weights for weighted_average strategy
|
153 |
-
if strategy == 'weighted_average':
|
154 |
-
if weights is None:
|
155 |
-
self.weights = [1.0, 1.0, 1.0, 1.0]
|
156 |
-
else:
|
157 |
-
assert len(weights) == 4, "Weights must match the number of models."
|
158 |
-
self.weights = weights
|
159 |
-
|
160 |
-
|
161 |
-
def forward(self, x):
|
162 |
-
# Get predictions from each base model
|
163 |
-
tft_output = self.tft(x).detach().cpu().numpy()
|
164 |
-
tcn_output = self.tcn(x).detach().cpu().numpy()
|
165 |
-
ets_output = self.ets(x).detach().cpu().numpy()
|
166 |
-
bilstm_output = self.bilstm(x).detach().cpu().numpy()
|
167 |
-
|
168 |
-
if self.strategy == 'stacking':
|
169 |
-
# Combine outputs into features for the meta-learner
|
170 |
-
features = np.column_stack((tft_output, tcn_output, ets_output, bilstm_output))
|
171 |
-
# During inference, use the meta-learner to make predictions
|
172 |
-
ensemble_output = self.meta_learner.predict(features)
|
173 |
-
return torch.tensor(ensemble_output).to(x.device).float()
|
174 |
-
|
175 |
-
elif self.strategy == 'voting':
|
176 |
-
# For soft voting, calculate the average
|
177 |
-
ensemble_output = torch.mean(torch.stack([tft_output, tcn_output, ets_output, bilstm_output], dim=0), dim=0)
|
178 |
-
return ensemble_output
|
179 |
-
|
180 |
-
elif self.strategy == 'weighted_average':
|
181 |
-
# Weighted average of outputs
|
182 |
-
ensemble_output = (
|
183 |
-
self.weights[0] * tft_output +
|
184 |
-
self.weights[1] * tcn_output +
|
185 |
-
self.weights[2] * ets_output +
|
186 |
-
self.weights[3] * bilstm_output
|
187 |
-
) / sum(self.weights)
|
188 |
-
return ensemble_output
|
189 |
-
|
190 |
-
elif self.strategy == 'simple_average':
|
191 |
-
# Simple average of outputs
|
192 |
-
ensemble_output = (tft_output + tcn_output + ets_output + bilstm_output) / 4
|
193 |
-
return ensemble_output
|
194 |
-
|
195 |
-
|
196 |
-
else:
|
197 |
-
raise ValueError(f"Invalid strategy: {self.strategy}. Currently supports only 'stacking', 'voting', 'weighted_average', and 'simple_average'.")
|
198 |
-
|
199 |
-
def collect_stacking_data(self, x, y):
|
200 |
-
"""Collect base model outputs and corresponding targets for meta-learner training."""
|
201 |
-
tft_output = self.tft(x).detach().cpu().numpy()
|
202 |
-
tcn_output = self.tcn(x).detach().cpu().numpy()
|
203 |
-
ets_output = self.ets(x).detach().cpu().numpy()
|
204 |
-
bilstm_output = self.bilstm(x).detach().cpu().numpy()
|
205 |
-
|
206 |
-
# Stack features and store
|
207 |
-
features = np.column_stack((tft_output, tcn_output, ets_output, bilstm_output))
|
208 |
-
self.stacking_features.append(features)
|
209 |
-
self.stacking_targets.append(y.detach().cpu().numpy())
|
210 |
-
|
211 |
-
def train_meta_learner(self, save_path=None):
|
212 |
-
"""Train the XGBoost meta-learner on collected data and save the model."""
|
213 |
-
# Concatenate all collected features and targets
|
214 |
-
X = np.vstack(self.stacking_features)
|
215 |
-
y = np.concatenate(self.stacking_targets)
|
216 |
-
|
217 |
-
# Train the XGBoost model
|
218 |
-
self.meta_learner.fit(X, y)
|
219 |
-
print("Meta-learner trained successfully!")
|
220 |
-
|
221 |
-
# Save the trained meta-learner
|
222 |
-
if save_path:
|
223 |
-
self.meta_learner.save_model(save_path)
|
224 |
-
print(f"Meta-learner saved to {save_path}")
|
225 |
-
|
226 |
|
227 |
def process_video(video_path):
|
228 |
# Parameters
|
|
|
14 |
import xgboost as xgb
|
15 |
from torch.utils.data import DataLoader, TensorDataset
|
16 |
import time
|
17 |
+
from models.temporal_fusion_transformer import TemporalFusionTransformer
|
18 |
+
from models.tcn import TCN
|
19 |
+
from models.etsformer import ETSformer
|
20 |
+
from models.bilstm import BiLSTM
|
21 |
+
from models.respfusion import RespFusion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def process_video(video_path):
|
24 |
# Parameters
|
models/__pycache__/bilstm.cpython-311.pyc
ADDED
Binary file (1.53 kB). View file
|
|
models/__pycache__/etsformer.cpython-311.pyc
ADDED
Binary file (2.74 kB). View file
|
|
models/__pycache__/respfusion.cpython-311.pyc
ADDED
Binary file (6.53 kB). View file
|
|
models/__pycache__/tcn.cpython-311.pyc
ADDED
Binary file (2.09 kB). View file
|
|
models/__pycache__/temporal_fusion_transformer.cpython-311.pyc
ADDED
Binary file (2.1 kB). View file
|
|
models/bilstm.py
CHANGED
@@ -1,19 +1,5 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
from scipy.signal import find_peaks, savgol_filter
|
7 |
-
from collections import Counter
|
8 |
-
from tqdm import tqdm
|
9 |
-
import time
|
10 |
-
import os
|
11 |
-
import torch
|
12 |
import torch.nn as nn
|
13 |
-
|
14 |
-
import xgboost as xgb
|
15 |
-
from torch.utils.data import DataLoader, TensorDataset
|
16 |
-
import time
|
17 |
|
18 |
# Updated BiLSTM to handle variable layers
|
19 |
class BiLSTM(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch.nn as nn
|
2 |
+
|
|
|
|
|
|
|
3 |
|
4 |
# Updated BiLSTM to handle variable layers
|
5 |
class BiLSTM(nn.Module):
|
models/etsformer.py
CHANGED
@@ -1,19 +1,6 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
from scipy.signal import find_peaks, savgol_filter
|
7 |
-
from collections import Counter
|
8 |
-
from tqdm import tqdm
|
9 |
-
import time
|
10 |
-
import os
|
11 |
import torch
|
12 |
import torch.nn as nn
|
13 |
import torch.fft as fft
|
14 |
-
import xgboost as xgb
|
15 |
-
from torch.utils.data import DataLoader, TensorDataset
|
16 |
-
import time
|
17 |
|
18 |
# Build the ETSformer Class: Encoder, Trend, Seasonality, Exponential Smoothing, and Output Layer
|
19 |
class ETSformer(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.fft as fft
|
|
|
|
|
|
|
4 |
|
5 |
# Build the ETSformer Class: Encoder, Trend, Seasonality, Exponential Smoothing, and Output Layer
|
6 |
class ETSformer(nn.Module):
|
models/respfusion.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import xgboost as xgb
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class RespFusion(nn.Module):
|
7 |
+
def __init__(self, tft_model, tcn_model, ets_model, bilstm_model, meta_learner_path=None, weights=None, strategy='stacking',):
|
8 |
+
super(RespFusion, self).__init__()
|
9 |
+
self.tft = tft_model
|
10 |
+
self.tcn = tcn_model
|
11 |
+
self.ets = ets_model
|
12 |
+
self.bilstm = bilstm_model
|
13 |
+
self.strategy = strategy # 'stacking' or other strategies
|
14 |
+
|
15 |
+
# Initialize XGBoost meta-learner
|
16 |
+
self.meta_learner = xgb.XGBRegressor() # Or XGBClassifier for classification
|
17 |
+
|
18 |
+
# Load the meta-learner if a path is provided
|
19 |
+
if meta_learner_path is not None:
|
20 |
+
self.meta_learner.load_model(meta_learner_path)
|
21 |
+
print(f"Meta-learner loaded from {meta_learner_path}")
|
22 |
+
|
23 |
+
# Storage for stacking training data
|
24 |
+
self.stacking_features = []
|
25 |
+
self.stacking_targets = []
|
26 |
+
|
27 |
+
# Set model weights for ensembling, default to equal weights for weighted_average strategy
|
28 |
+
if strategy == 'weighted_average':
|
29 |
+
if weights is None:
|
30 |
+
self.weights = [1.0, 1.0, 1.0, 1.0]
|
31 |
+
else:
|
32 |
+
assert len(weights) == 4, "Weights must match the number of models."
|
33 |
+
self.weights = weights
|
34 |
+
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
# Get predictions from each base model
|
38 |
+
tft_output = self.tft(x).detach().cpu().numpy()
|
39 |
+
tcn_output = self.tcn(x).detach().cpu().numpy()
|
40 |
+
ets_output = self.ets(x).detach().cpu().numpy()
|
41 |
+
bilstm_output = self.bilstm(x).detach().cpu().numpy()
|
42 |
+
|
43 |
+
if self.strategy == 'stacking':
|
44 |
+
# Combine outputs into features for the meta-learner
|
45 |
+
features = np.column_stack((tft_output, tcn_output, ets_output, bilstm_output))
|
46 |
+
# During inference, use the meta-learner to make predictions
|
47 |
+
ensemble_output = self.meta_learner.predict(features)
|
48 |
+
return torch.tensor(ensemble_output).to(x.device).float()
|
49 |
+
|
50 |
+
elif self.strategy == 'voting':
|
51 |
+
# For soft voting, calculate the average
|
52 |
+
ensemble_output = torch.mean(torch.stack([tft_output, tcn_output, ets_output, bilstm_output], dim=0), dim=0)
|
53 |
+
return ensemble_output
|
54 |
+
|
55 |
+
elif self.strategy == 'weighted_average':
|
56 |
+
# Weighted average of outputs
|
57 |
+
ensemble_output = (
|
58 |
+
self.weights[0] * tft_output +
|
59 |
+
self.weights[1] * tcn_output +
|
60 |
+
self.weights[2] * ets_output +
|
61 |
+
self.weights[3] * bilstm_output
|
62 |
+
) / sum(self.weights)
|
63 |
+
return ensemble_output
|
64 |
+
|
65 |
+
elif self.strategy == 'simple_average':
|
66 |
+
# Simple average of outputs
|
67 |
+
ensemble_output = (tft_output + tcn_output + ets_output + bilstm_output) / 4
|
68 |
+
return ensemble_output
|
69 |
+
|
70 |
+
|
71 |
+
else:
|
72 |
+
raise ValueError(f"Invalid strategy: {self.strategy}. Currently supports only 'stacking', 'voting', 'weighted_average', and 'simple_average'.")
|
73 |
+
|
74 |
+
def collect_stacking_data(self, x, y):
|
75 |
+
"""Collect base model outputs and corresponding targets for meta-learner training."""
|
76 |
+
tft_output = self.tft(x).detach().cpu().numpy()
|
77 |
+
tcn_output = self.tcn(x).detach().cpu().numpy()
|
78 |
+
ets_output = self.ets(x).detach().cpu().numpy()
|
79 |
+
bilstm_output = self.bilstm(x).detach().cpu().numpy()
|
80 |
+
|
81 |
+
# Stack features and store
|
82 |
+
features = np.column_stack((tft_output, tcn_output, ets_output, bilstm_output))
|
83 |
+
self.stacking_features.append(features)
|
84 |
+
self.stacking_targets.append(y.detach().cpu().numpy())
|
85 |
+
|
86 |
+
def train_meta_learner(self, save_path=None):
|
87 |
+
"""Train the XGBoost meta-learner on collected data and save the model."""
|
88 |
+
# Concatenate all collected features and targets
|
89 |
+
X = np.vstack(self.stacking_features)
|
90 |
+
y = np.concatenate(self.stacking_targets)
|
91 |
+
|
92 |
+
# Train the XGBoost model
|
93 |
+
self.meta_learner.fit(X, y)
|
94 |
+
print("Meta-learner trained successfully!")
|
95 |
+
|
96 |
+
# Save the trained meta-learner
|
97 |
+
if save_path:
|
98 |
+
self.meta_learner.save_model(save_path)
|
99 |
+
print(f"Meta-learner saved to {save_path}")
|
100 |
+
|
models/tcn.py
CHANGED
@@ -1,19 +1,5 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
from scipy.signal import find_peaks, savgol_filter
|
7 |
-
from collections import Counter
|
8 |
-
from tqdm import tqdm
|
9 |
-
import time
|
10 |
-
import os
|
11 |
import torch
|
12 |
import torch.nn as nn
|
13 |
-
import torch.fft as fft
|
14 |
-
import xgboost as xgb
|
15 |
-
from torch.utils.data import DataLoader, TensorDataset
|
16 |
-
import time
|
17 |
|
18 |
# Define the TCN model
|
19 |
class TCN(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Define the TCN model
|
5 |
class TCN(nn.Module):
|
models/{temporalfusiontransformer.py → temporal_fusion_transformer.py}
RENAMED
@@ -1,19 +1,5 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
from scipy.signal import find_peaks, savgol_filter
|
7 |
-
from collections import Counter
|
8 |
-
from tqdm import tqdm
|
9 |
-
import time
|
10 |
-
import os
|
11 |
-
import torch
|
12 |
import torch.nn as nn
|
13 |
-
|
14 |
-
import xgboost as xgb
|
15 |
-
from torch.utils.data import DataLoader, TensorDataset
|
16 |
-
import time
|
17 |
|
18 |
# Define the Temporal Fusion Transformer (Temporal Fusion Transformer) model
|
19 |
class TemporalFusionTransformer(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch.nn as nn
|
2 |
+
|
|
|
|
|
|
|
3 |
|
4 |
# Define the Temporal Fusion Transformer (Temporal Fusion Transformer) model
|
5 |
class TemporalFusionTransformer(nn.Module):
|