Spaces:
Runtime error
Runtime error
abhi001vj
commited on
Commit
Β·
005d125
1
Parent(s):
9d9cdb3
added the required app
Browse files- app.py +175 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import logging
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from json import JSONDecodeError
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import streamlit as st
|
| 8 |
+
from annotated_text import annotation
|
| 9 |
+
from markdown import markdown
|
| 10 |
+
import json
|
| 11 |
+
from haystack import Document
|
| 12 |
+
import pandas as pd
|
| 13 |
+
from haystack.document_stores import PineconeDocumentStore
|
| 14 |
+
from haystack.nodes import EmbeddingRetriever, FARMReader
|
| 15 |
+
from haystack.pipelines import ExtractiveQAPipeline
|
| 16 |
+
|
| 17 |
+
@st.cache
|
| 18 |
+
def create_doc_store():
|
| 19 |
+
document_store = PineconeDocumentStore(
|
| 20 |
+
api_key= st.secrets["pinecone_apikey"],
|
| 21 |
+
index='qa_demo',
|
| 22 |
+
similarity="cosine",
|
| 23 |
+
embedding_dim=768
|
| 24 |
+
)
|
| 25 |
+
return document_store
|
| 26 |
+
|
| 27 |
+
@st.cache
|
| 28 |
+
def create_pipe(document_store):
|
| 29 |
+
retriever = EmbeddingRetriever(
|
| 30 |
+
document_store=document_store,
|
| 31 |
+
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
| 32 |
+
model_format="sentence_transformers",
|
| 33 |
+
)
|
| 34 |
+
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
|
| 35 |
+
pipe = ExtractiveQAPipeline(reader, retriever)
|
| 36 |
+
return pipe
|
| 37 |
+
|
| 38 |
+
def query(pipe, question, top_k_reader, top_k_retriever):
|
| 39 |
+
res = pipe.run(
|
| 40 |
+
query=question, params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}}
|
| 41 |
+
)
|
| 42 |
+
answer_df = []
|
| 43 |
+
# for r in res['answers']:
|
| 44 |
+
# ans_dict = res['answers'][0].meta
|
| 45 |
+
# ans_dict["answer"] = r.context
|
| 46 |
+
# answer_df.append(ans_dict)
|
| 47 |
+
# result = pd.DataFrame(answer_df)
|
| 48 |
+
# result.columns = ["Source","Title","Year","Link","Answer"]
|
| 49 |
+
# result[["Answer","Link","Source","Title","Year"]]
|
| 50 |
+
return res
|
| 51 |
+
|
| 52 |
+
document_store = create_doc_store()
|
| 53 |
+
pipe = create_pipe(create_pipe)
|
| 54 |
+
|
| 55 |
+
def set_state_if_absent(key, value):
|
| 56 |
+
if key not in st.session_state:
|
| 57 |
+
st.session_state[key] = value
|
| 58 |
+
|
| 59 |
+
# Adjust to a question that you would like users to see in the search bar when they load the UI:
|
| 60 |
+
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.")
|
| 61 |
+
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer")
|
| 62 |
+
|
| 63 |
+
# Sliders
|
| 64 |
+
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
|
| 65 |
+
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
st.set_page_config(page_title="Haystack Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png")
|
| 69 |
+
|
| 70 |
+
# Persistent state
|
| 71 |
+
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
|
| 72 |
+
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# Small callback to reset the interface in case the text of the question changes
|
| 76 |
+
def reset_results(*args):
|
| 77 |
+
st.session_state.answer = None
|
| 78 |
+
st.session_state.results = None
|
| 79 |
+
st.session_state.raw_json = None
|
| 80 |
+
|
| 81 |
+
# Title
|
| 82 |
+
st.write("# Haystack Demo - Explore the world")
|
| 83 |
+
st.markdown(
|
| 84 |
+
"""
|
| 85 |
+
This demo takes its data from two sample data csv with statistics on various topics
|
| 86 |
+
Ask any question on this topic and see if Haystack can find the correct answer to your query!
|
| 87 |
+
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
|
| 88 |
+
""",
|
| 89 |
+
unsafe_allow_html=True,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Sidebar
|
| 93 |
+
st.sidebar.header("Options")
|
| 94 |
+
top_k_reader = st.sidebar.slider(
|
| 95 |
+
"Max. number of answers",
|
| 96 |
+
min_value=1,
|
| 97 |
+
max_value=10,
|
| 98 |
+
value=DEFAULT_NUMBER_OF_ANSWERS,
|
| 99 |
+
step=1,
|
| 100 |
+
on_change=reset_results,
|
| 101 |
+
)
|
| 102 |
+
top_k_retriever = st.sidebar.slider(
|
| 103 |
+
"Max. number of documents from retriever",
|
| 104 |
+
min_value=1,
|
| 105 |
+
max_value=10,
|
| 106 |
+
value=DEFAULT_DOCS_FROM_RETRIEVER,
|
| 107 |
+
step=1,
|
| 108 |
+
on_change=reset_results,
|
| 109 |
+
)
|
| 110 |
+
# data_files = st.file_uploader(
|
| 111 |
+
# "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
|
| 112 |
+
# )
|
| 113 |
+
# for data_file in data_files:
|
| 114 |
+
# # Upload file
|
| 115 |
+
# if data_file:
|
| 116 |
+
# raw_json = upload_doc(data_file)
|
| 117 |
+
|
| 118 |
+
question = st.text_input(
|
| 119 |
+
value=st.session_state.question,
|
| 120 |
+
max_chars=100,
|
| 121 |
+
on_change=reset_results,
|
| 122 |
+
label="question",
|
| 123 |
+
label_visibility="hidden",
|
| 124 |
+
)
|
| 125 |
+
col1, col2 = st.columns(2)
|
| 126 |
+
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
| 127 |
+
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
| 128 |
+
|
| 129 |
+
# Run button
|
| 130 |
+
run_pressed = col1.button("Run")
|
| 131 |
+
if run_pressed:
|
| 132 |
+
|
| 133 |
+
run_query = (
|
| 134 |
+
run_pressed or question != st.session_state.question
|
| 135 |
+
)
|
| 136 |
+
# Get results for query
|
| 137 |
+
if run_query and question:
|
| 138 |
+
reset_results()
|
| 139 |
+
st.session_state.question = question
|
| 140 |
+
|
| 141 |
+
with st.spinner(
|
| 142 |
+
"π§ Performing neural search on documents... \n "
|
| 143 |
+
"Do you want to optimize speed or accuracy? \n"
|
| 144 |
+
"Check out the docs: https://haystack.deepset.ai/usage/optimization "
|
| 145 |
+
):
|
| 146 |
+
try:
|
| 147 |
+
st.session_state.results = query(
|
| 148 |
+
question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
|
| 149 |
+
)
|
| 150 |
+
except JSONDecodeError as je:
|
| 151 |
+
st.error("π An error occurred reading the results. Is the document store working?")
|
| 152 |
+
return
|
| 153 |
+
except Exception as e:
|
| 154 |
+
logging.exception(e)
|
| 155 |
+
if "The server is busy processing requests" in str(e) or "503" in str(e):
|
| 156 |
+
st.error("π§βπΎ All our workers are busy! Try again later.")
|
| 157 |
+
else:
|
| 158 |
+
st.error("π An error occurred during the request.")
|
| 159 |
+
return
|
| 160 |
+
|
| 161 |
+
if st.session_state.results:
|
| 162 |
+
|
| 163 |
+
st.write("## Results:")
|
| 164 |
+
|
| 165 |
+
for count, result in enumerate(st.session_state.results['answers']):
|
| 166 |
+
answer, context = result.answer, result.context
|
| 167 |
+
start_idx = context.find(answer)
|
| 168 |
+
end_idx = start_idx + len(answer)
|
| 169 |
+
source = f"[{result.meta['Title']}]({result.meta['link']})"
|
| 170 |
+
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
|
| 171 |
+
st.write(
|
| 172 |
+
markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
|
| 173 |
+
unsafe_allow_html=True,
|
| 174 |
+
)
|
| 175 |
+
st.markdown(f"**Relevance:** {result['relevance']} - **Source:** {source}")
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
farm-haystack[pinecone]
|
| 3 |
+
pinecone-client
|
| 4 |
+
datasets
|