|
""" |
|
Utilities module: LLM client wrapper and shared helpers. |
|
""" |
|
import os |
|
import openai |
|
from openai import AzureOpenAI, error |
|
|
|
try: |
|
from src.utils import logger |
|
except ImportError: |
|
import structlog |
|
logger = structlog.get_logger() |
|
|
|
class LLMClient: |
|
""" |
|
Simple wrapper around OpenAI (or any other) LLM API. |
|
Reads API key from environment and exposes `generate(prompt)`. |
|
""" |
|
@staticmethod |
|
def generate(prompt: str, model: str = None, max_tokens: int = 512, **kwargs) -> str: |
|
azure_api_key = os.getenv('AZURE_API_KEY') |
|
azure_endpoint = os.getenv('AZURE_ENDPOINT') |
|
azure_api_version = os.getenv('AZURE_API_VERSION') |
|
openai_model_name = model or os.getenv('OPENAI_MODEL', 'gpt-4o') |
|
|
|
if not (azure_api_key or azure_endpoint or azure_api_version or openai_model_name): |
|
logger.error('OPENAI_API_KEY is not set') |
|
raise EnvironmentError('Missing OPENAI_API_KEY') |
|
client = AzureOpenAI( |
|
api_key=azure_api_key, |
|
azure_endpoint=azure_endpoint, |
|
api_version=azure_api_version |
|
) |
|
try: |
|
resp = client.ChatCompletion.create( |
|
model=openai_model_name, |
|
messages=[{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt}], |
|
max_tokens=max_tokens, |
|
temperature=0.0, |
|
**kwargs |
|
) |
|
text = resp.choices[0].message.content.strip() |
|
return text |
|
except openai.error.OpenAIError as oe: |
|
logger.error(f'OpenAI API error: {oe}') |
|
raise |
|
except Exception as e: |
|
logger.exception('LLM generation failed') |
|
raise |
|
|